
5
Trees

Graphs and trees are ubiquitous data structures. They don’t easily
fit into Relational model; therefore querying them requires a little
bit more ingenuity than routine select-project-join.

Compared to graphs, trees are relatively simple creatures. They
are easy to draw. Almost any problem involving a tree structure is
easy to solve. Algorithms on trees are generally fast. Edges, which
are very important in graph definition, can be almost completely
ignored for a tree. The tree structure could be encrypted in the
nodes alone, and those tree encodings could be invented almost on
daily basis.

In most of the chapter we’ll focus on tree encodings. The rest is
dedicated to smaller problems like node ordering by ad-hoc
criteria. Several problems are postponed to the next chapter,
where we study hierarchical aggregate queries and tree
comparison. A reader who is primarily looking forward to
developing some intuition with a vendor-specific hierarchical
SQL extension (be that the connect by, or recursive with operator)
is advised to proceed to the next chapter.

Materialized Path
Tree is a subclass of graph. We won’t explore this idea in any
depth in this chapter, however, because, once again, graphs are
much more complex entities with their own set of problems. For
all practical purposes a tree can be defined as a set of nodes
arranged into a hierarchical structure via tree encoding. The
purpose of tree encoding is to assign a special label to each node
and manipulate tree nodes – i.e. query and update – by means of
those labels. Informally, each node is equipped with a global
positioning device that transmits the node’s coordinates. Once
each node’s geographical position is known, we can answer
typical queries like
Count all the employees who are located south of the “King”, in other words, who report
directly or indirectly to him.

1

Without a doubt you are already familiar with at least one such
encoding: the UNIX directory structure1. Each file location in the
hierarchy is defined by an absolute pathname -- a chain of
directories that users have to navigate from the root to the leaves
of hierarchy. For example, /usr/bin/ls is an absolute pathname.
On the top of the directory structure there is a directory called usr,
which contains a directory called bin, which contains a file called
ls.

This seemingly straightforward idea can be applied to any tree
structure. First, discover (or cook up) some unique key, which
would distinguish a node’s children. Then, list all the ancestor
unique keys as the node’s encoding. This list can be represented
as a string (then, we have to agree upon string delimiter), or as a
collection datatype. We’ll refer to this encoding as materialized
path. The adjective materialized emphasizes the fact that the path
is stored. If the path is built dynamically, then the adjective is
omitted and we refer to this dynamically generated encoding as
just path2.

 Employee Name Encoding
 KING 1

 JONES 1.1
 SCOTT 1.1.1
 ADAMS 1.1.1.1
 FORD 1.1.2
 SMITH 1.1.2.1
 BLAKE 1.2
 ALLEN 1.2.1
 WARD 1.2.2
 MARTIN 1.2.3

Table 5.1: Organization chart encoded with
materialized path. We enumerated each node’s
children with integer numbers, and designated dot
as a delimiter.
At this moment, we already have enough expressive power for
basic queries:
1. An employee JONES and all his (indirect) subordinates:
select e1.ename from emp e1, emp e2
where e1.path like e2.path || '%'
and e2.ename = 'JONES'

1 Ignoring symbolic links
2 The reader undoubtedly noticed the parallel to view/materialized view terminology.

2

javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=0;document.mainform.action+='#'+'_00';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=1;document.mainform.action+='#'+'_01';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=2;document.mainform.action+='#'+'_02';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=3;document.mainform.action+='#'+'_03';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=4;document.mainform.action+='#'+'_04';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=5;document.mainform.action+='#'+'_05';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=6;document.mainform.action+='#'+'_06';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=7;document.mainform.action+='#'+'_07';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=8;document.mainform.action+='#'+'_08';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=9;document.mainform.action+='#'+'_09';document.mainform.submit()

2. An employee FORD and chain of his supervisors:
select e1.ename from emp e1, emp e2
where e2.path like e1.path || '%'
and e2.ename = 'FORD'

Usually, query performance is unrelated to the form the query is
written in SQL. In principle, a query optimizer has powerful
techniques for transforming any query into an equivalent, better
performing expression. Not in this case!

The first query is fine. Matching a string prefix is roughly
equivalent to a range check
select e1.ename from emp e1, emp e2
where e1.path between e2.path and e2.path || chr(255)
and e2.ename = 'JONES'

where chr(255) is the last ASCII code. A reasonable execution
strategy would be to find an (unique) employee record e2
matching ename='JONES', first. Finding a unique record is typically
done via index lookup, in other words, extremely fast. The first
query execution step establishes the range of paths, which the
e1.path encoding has to fall into. If this range of paths doesn’t
contain too many paths, then the best way to find them is to
iterate via index range scan. The more subordinates JONES has, the
longer it would take to output them. In other words, the speed of
this query is determined by size of the output – there is hardly a
more efficient way to express this query.

The equivalent range check rewriting is valid for the second query
as well
select e1.ename from emp e1, emp e2
where e2.path between e1.path and e1.path || chr(255)
and e2.ename = 'FORD'

Unlike the previous case, however, we know not the interval of
paths, but the path e2.path itself, which we are going to match
against all the intervals of the e1 table. Certainly, there wouldn’t
be that many paths that match with e2.path, because the chain of
ancestors in a balanced hierarchy is never too long. Yet, there is
no obvious index that could leverage this idea. The condition of a
point belonging to an interval consists of the two predicates
e2.path >= e1.path and e2.path <= e1.path || chr(255). A normal B-
Tree index on e1.path column could be leveraged while processing
the first predicate only, and it would have to scan a half of the
records on average3.

3 There are specialized indexing schemes – R-Tree, Interval tree, etc – that approach this
problem. It remains to be seen if they could ever enjoy the same level of adoption as B-Tree
and bitmapped indexes.

3

The critical observation is that a chain of ancestors is encoded in
the node’s materialized path encoding. We don’t have to access
the database in order to tell that the ancestors of the node 1.5.3.2
are nodes 1.5.3, 1.5, and 1. A simple function could parse the
materialized path. If this function is implemented on the client
side, we can build a dynamic SQL query
select ename from emp
where path in ('1.5.3', '1.5', '1')

On the server side, the implementation could be little bit more
sophisticated. The list of ancestors can be implemented as a
temporary table built by a table function. This sketchy idea will be
developed in greater detail in later sections, where we’ll study
much more elegant encodings than materialized path.

We conclude this section with the materialized path tree encoding
schema design:
table TreeNodes (
 path varchar2(2000),
 …
)

This schema leaves the structure of TreeNodes.path column
unspecified. Ideally, we could proceed and add some constraints,
but, once again, much nicer development that doesn’t require
string parsing techniques awaits us ahead.

Finding a set of intervals covering a
point

Querying ranges is asymmetric from performance
perspective. It is easy to answer if a point falls
inside some interval, but it is hard to index a set of
intervals that contain a given point. Applied to
nested sets we run into a difficulty answering
queries about node’s ancestors.

4

Nested Sets
Another approach to a tree structure is modeling it as nested sets.

Figure 5.2a: A tree.

Figure 5.2b: Nested sets structure for the tree at
fig. 5.2a. Set elements are boxes, and sets are the
ovals including them. Every parent set contains its
children sets.
Set containment could clearly accommodate any tree. Whenever
we need to grow a tree by adding a new child, we just nest one
more set into appropriate parent set.

Naive nested sets implementation would materialize a set of
elements at each node. Aside from the fact that the RDBMS of
your choice has to be capable operating with sets at the datatype
level4, this implementation would be quite inefficient. Every time
a node is inserted into a tree, the chain of all the containing sets
should be expanded to include (at least) one more element.

A more sophisticated variant of Nested Sets has been widely
popularized by Joe Celko. The main idea behind this encoding is
representing nested sets as intervals of integers (Fig. 5.3).

4 High-end databases indeed have support for collection datatypes.

A
B

EDC

A
B

EC D

5

Figure 5.3: Nested Sets as intervals of integers. The
node B is encoded by the interval beginning with 2
and ending with 7.
Unlike our first naïve nested sets implementation, where we must
have a set datatype in order to be able to check if one set encoding
contains another encoding, Celko’s encoding no longer needs it.

The schema for nested sets tree encoding:
table EmpHierarchy (
 left integer,
 right integer,
 ename varchar(2000),
 …
)

A typical query checks if one interval is covered by the other
interval, which, as we know already, can be easily expressed via
standard SQL. For example,
select node1.ename
from EmpHierarchy node1, EmpHierarchy node2
where node1.left between node2.left and node2.right
and node2.ename = ‘SMITH’

finds a chain of SMITHs supervisors. This query is essentially the
same as querying the chain of ancestors in the section on
materialized path encoding. This raises the concern about this
query’s performance. The dynamic SQL trick, which we
employed for materialized path encoding, however, no longer
works. There is no way to know the position of the node in the
hierarchy by looking at the encoding of that node alone.

Like our naïve nested sets, intervals of integers encoding is
volatile. Unlike naïve nested sets, inserting a new node involves a
lot more work – roughly a half of the nodes must be recomputed.

The crux of the problem is that integers aren’t dense. There is
always a limit onto a number of intervals that you can nest inside
any given interval of integers.

A
B

EC D

1 2 3 4 5 6 7 8 9 10

6

Fortunately, integers have nothing to do with interval nesting.
They excel for illustration purposes, but if we want non-volatile
encoding, we have to move on to dense domains of numbers, like
rational or real numbers. With this goal in mind, let’s study how
to nest intervals of rational numbers. But first, we have to figure
out how to divide an interval into smaller pieces.

Interval Halving
Consider splitting an interval with rational endpoints into two
smaller intervals. Any point between the left and right endpoint
might be good enough to the extent that we get two intervals. On
the other hand, if we choose this point carelessly, then one
interval might be much smaller than the other one. This might be a
problem from implementation perspective, because small intervals
impose much stricter requirements on arithmetic’s precision. For
example, checking if a point 0.7453 belongs to the interval [0.3,
0.9] is much easier than if it belongs to the interval [0.743, 0.748],
since we need to go no further than 1 digit comparison in the first
case versus 3 digits in the second. Therefore, we have to figure
out the “most economical” way of finding the point between the
two.

To repeat, given 2 rational numbers, what is the simplest number
between them? Most people would probably choose the arithmetic
average. For example, the simplest number between 0 and ½ is ¼,
the simplest number between ¼ and ½ is 3/8 and so on. If we start
with the point 0 and 1 and continue on halving the intervals
iteratively then, what kind of numbers would be produced?
Clearly, those whose denominator is a power of 2, or simply,
dyadic fractions.

7

Figure 5.4: Halving interval [0,1] produces dyadic
fractions that are naturally organized into a binary
tree.
Elementary school students might beg to differ. When questioned
what the sum of ½ and ¼ is some suggest that the result is ½ + ¼
= (1+1)/(2+4) = 2/6 = 1/35. Ironically, their naïve approach is not
without merit. The operation of adding fractions in this “wrong
way” is called the mediant. The mediant is the simplest number
between the two fractions if we use smallness of denominator as a
measure of simplicity. Indeed, the average of ¼ and ½ has
denominator 8, while the mediant has denominator 3.

If we start with the point 0 and 1 and continue on taking the
mediant iteratively then, we produce another famous set of
numbers – Farey fractions.

5 In American educational system adding rational numbers correctly is a skill developed
somewhere between middle school and college.

 3
 —

 5

 5
 —

 7

 5
 —

 8

 4
 —

 7

 3
 —

 7

 3
 —

 8

 2
 —

 7

 1
 —

 5

 1
 —

 4

 2
 —

 5

 3
 —

 5

 3
 —

 4

 1
 —

 3

 2
 —

 3

 1
 —

 2

 1
 —

 1

15
 —

16

13
 —

16

11
 —

16

 9
 —

16

 7
 —

16

 5
 —

16

 3
 —

16

 1
 —

16

 1
 —

 8

 3
 —

 8

 5
 —

 8

 7
 —

 8

 1
 —

 4

 3
 —

 4

 1
 —

 2

 1
 —

 1

1
—
1

0
—

1

0
—

1

8

Figure 5.5: Dividing interval [0,1] by taking a
mediant produces Farey fractions organized into
Stern-Brocot tree.

The two systems of rational numbers that we just described are
very closely related. In fact, there is a fascinating map between
them, but the details are perhaps too advanced for a SQL
programming book. An interested reader might Google Minkovski
question mark function.

Although it is possible to develop nested interval tree encodings
with both approaches, in this book we’ll study Farey fractions
only. The main reason is the encoding size. For the tree of dyadic
fractions denominators multiply by 2 at each next level. For Stern-
Brocot tree denominators grow slightly slower, approximately as
powers of 1.618, where 1.618 is the golden ratio. In a word, Farey
fractions is the most economical way to organize a system of
nested intervals.

From Binary to N-ary Trees
The idea of interval splitting applies to binary trees. It could be
easily extended to general n-ary trees by a well known one-to-one
mapping of binary trees to n-ary trees. Given an n-ary tree we
transform it into binary tree as follows: each parent node
connected to the first child stays connected that way in the binary
tree;ach next child is detached from its parent and is reconnected
to its older sibling. Therefore, the second sibling has the first
sibling as a parent in the binary tree; the third is connected to the
second, and so on. The resulting tree is obviously binary, since
each node has exactly two connections:
1. The left child as a former first child in the n-ary tree.
2. The right child as a former younger sibling in the n-ary tree.

9

Figure 5.6: Mapping n-ary into binary tree could be
viewed as a reorganization of edges between the
tree nodes. A link between a parent and its first
child remains unchanged, while a link from a
younger child is transferred to the older sibling.
Let’s transform the binary tree in fig. 5.5 into an n-ary tree. The
root node has only one child. Therefore, it is convenient to agree
that the root node of the binary tree in fig. 5.5 is 1/1 rather than ½.
Then, node ½ is the first child, 2/3 is the second child, and so on.
The first child of ½ is 1/3, the second child is 2/5, etc (Fig. 5.7).

1.1
1.2

1.31.1.1 1.2.1

1

1.1.2 1.2.21.1.1.1 1.3.11.2.1.1 1.4

1.1
1.2

1.31.1.1 1.2.1

1

1.1.2 1.2.21.1.1.1 1.3.11.2.1.1 1.4

10

Figure 5.7: Stern-Brocot binary tree reorganized
into n-ary tree.
Let’s wrap these vague ideas into more rigorous form. In the next
section we’ll see that, Farey fractions are essentially continued
fractions, which would leads to a simple algebra of 2×2 matrices.
Matrices are required, because matrix multiplication mimics
materialized path concatenation. Our development is essentially
translating the algebra of materialized path strings into matrix
form.

Matrix Encoding
Firstly a quick reminder of how to multiply 2×2 matrices of
integer numbers.

Figure 5.8: Multiplying 2×2 matrices. Each row in
the left operand is matched element by element
against a column in the right operand.
Matrix multiplication obeys the same rules as string
concatenation. It is associative

(AB)C = A(BC)

and distributive

 4
 —

 5

 5
 —

 7

 5
 —

 8

 4
 —

 7

 3
 —

 7

 3
 —

 8

 2
 —

 7

 1
 —

 5

 1
 —

 4

 2
 —

 5

 3
 —

 5

 3
 —

 4

 1
 —

 3

 2
 —

 3

 1
 —

 2

 1
 —

 1

1
3

7
4

-1
5

2
-2

…
…

1⋅2+7⋅(-2)

…

1
—
1

0
—

1

11

AB + AC = A(B+C)

but not commutative
AB ≠ BA

Now, any materialized path is a concatenation of atomic
materialized paths. For example, .1.3.2.5 can be viewed as .1
linked to .3, then joined with .2, and finally connected to .5. Can
we do the same thing with matrices? The trick is to define atomic
matrices, such that multiplying them would produce the matrix
encoding for the full path.

Atomic matrices turned out to be quite simple. In fact every
atomic matrix has three constant entries: 0 in the lower right
corner, and 1 in the lower left, and -1 in the upper right. The upper
left entry is the node’s sequence number in the chain of siblings
incremented by 1. For example, .5 corresponds to the matrix









6 -1
1 0

Then, multiplying matrices corresponding to .1, .3, .2, and .5 we
get

 = . . . 







2 -1
1 0









4 -1
1 0









3 -1
1 0









6 -1
1 0









107 -19
62 -11

Although we didn’t seem to progress much so far, we can at least
round up matrix tree encoding schema design
table MatrixTreeNodes (
 a11 integer,
 a12 integer,
 a21 integer,
 a22 integer
);

A lot of questions might emerge in the reader’s mind at this
moment, and we will address all of them one by one. The most
important being: how is this matrix encoding related to nested
intervals? Indeed, all these matrix manipulations should be
evaluated from the querying perspective. In particular, how would
we query a node’s descendants and ancestors? An even more
basic question: how do we find a node’s parent and immediate
children?

Parent and Children Queries

In our example

12

 = . . . 







2 -1
1 0









4 -1
1 0









3 -1
1 0









6 -1
1 0









107 -19
62 -11

there are certain constraints that this node encoding obeys. The
entries in the left column are positive, and the entries in the right
column are negative. Also absolute values of the entries in the
right column are component-wise smaller than left column.
Likewise, absolute values in the upper row are greater than in the
lower row. These properties are obvious for atomic matrices, but
what about arbitrary nodes?

Consider an arbitrary node with encoding










a11 a12

a21 a22

Its n-th child encoding is calculated as a matrix product

 = .










a11 a12

a21 a22









 + n 1 -1
1 0











 + a11 () + n 1 a12 − a11

 + a21 () + n 1 a22 − a21

Let us examine these expressions closely. First we see that the
parent left row entries are moved into the child right row with the
sign changed. Let assume that our intuition about the entries in the
left row being positive and the entries in the right row being
negative is correct in the case of the parent encoding. Then, it
must carry over to the child. By induction, it follows that any node
will obey these rules. A similar line of reasoning proves our
insight about absolute values.

The second very important constraint that matrix encoding
satisfies is

 = − a11 a22 a12 a21 1

A reader with basic linear algebra background has likely
recognized the matrix determinant here. Determinants obey a
multiplication law: when matrices multiply, their determinants
multiply as well. Therefore, the determinant of a node encoding
matrix is a product of the atomic matrix determinants! Since all
atomic matrices have determinant equal to 1, the determinant of
any node encoding matrix must be 1.

The determinant constraint reduces the number of independent
matrix entries to three. Given any three matrix elements, the
fourth entry is unambiguously calculated from the determinant

13

constraint equation. We could do even better – reducing the
number of independent elements to two.

Given the two elements a11 and a21, relabeled conventionally as a
and -b, plus unknowns a12 and a22 relabeled as y and x, the
determinant equation reads

 = + a x b y 1

This is perhaps the most celebrated equation in the elementary
number theory. Its integer solutions are calculated via the
extended Euclidean algorithm. Here is the algorithm illustrated
on our familiar matrix encoding example









107 -19
62 -11

We solve the equation
 = − 107 x 62 y 1

in a series of steps illustrated on fig 5.9.

Figure 5.9: Extended Euclidean algorithm applied to
numbers 107 and 62. We find an integer 1 such that
1*62 is no larger than 107, and then show that the
largest common measure of 62 and 107 is the same
as largest common measure of 62 and 107-1*62.
Lather, rinse, repeat. In the third column we
accumulate x and y factors .
At the last algorithm iteration we arrive at the values x=11 and y=19
that satisfy the equation.

Is this the only solution? Certainly not. Consider
62⋅107 - 107⋅62 = 0

Add it to
11⋅107 - 19⋅62 = 0

We have
(11+62)⋅107 – (19+107)⋅62 = 0

107-1*62

62 -1*45

45 -1*17

17 -1*11

11 –2*5

=

= 62

= (1*107-1*62)

= (2*62 -1*107)

= (3*107-5*62)

- 1*(1*107- 1*62)

- 2*(2*62 - 1*107)

- 1*(3*107- 5*62)

- 2*(7*62 - 4*107)

= 1*107- 1*62 = 45
= 2*62 - 1*107 = 17
= 3*107 -5*62 = 11
= 7*62 - 4*107 = 5
=11*107-19*62 = 1

14

which implies another solution x=73, y=126! Fortunately, we know
that x (i.e. a22) and y (i.e. a12) have to be smaller than 62 (i.e. a21) and
107 (i.e. a11), respectively. Therefore we can dismiss them.

The most important implication of our research in this section is
that the combination of a11 with a21 is always unique. We can go as
far as reducing the MatrixTreeNodes definition to these two attributes
(and calculate the other two columns on the fly via the extended
Euclidean algorithm), or leave the redundant attributes in the table
and just declare the unique key. We choose the second alternative,
which is justified by our next step. Knowing that a12 and a22 are
always negative, we are going to store their absolute values. Then,
as we have seen already, the child values a12 and a22 have to refer to
some parent identified by a11 and a21. In other words, a child always
refers to its parent explicitly via a foreign key constraint.

Therefore, let’s enhance our tree schema design
table MatrixTreeNodes (
 a11 integer,
 a12 integer,
 a21 integer,
 a22 integer
);
alter table MatrixTreeNodes
ADD CONSTRAINT uk_node UNIQUE (a11,a21)
ADD CONSTRAINT fk_adjacency FOREIGN KEY (a12,a22)
 REFERENCES MatrixTreeNodes (a11,a21);

Hierarchy design where a node refers to the parent name explicitly
is called an adjacency tree model, and its scope is actually bigger
than trees. The schema for adjacency model is the following
table AdjacentTreeNodes (
 id integer,
 parent_id integer
);
alter table AdjacentTreeNodes
ADD CONSTRAINT uk_node UNIQUE (id)
ADD CONSTRAINT fk_adjacency FOREIGN KEY (parent_id)
 REFERENCES AdjacentTreeNodes (id);

Unlike matrix encoding, there is no theory on how to choose a set
of node identifiers, except obvious the restrictions that the id
column is a unique identifier, and the parent_id always refers to the
parent node. The general adjacency model is the main topic of the
next chapter.

There is one subtle distinction between matrix and adjacency
encodings. What does the root node refer to? In the adjacency
encoding the root node parent_id has to be null, as there is no
parent. In the matrix encoding we just apply the extended

15

Euclidean algorithm and obtain the four numbers. The root node
refers to some nonexistent parent! What if we change the root
node matrix encoding









1 -1
1 0

into








1 null
1 null

Technically, we can’t force nulls into the matrix entries – it would
destroy all the algorithms that were developed so far. It is more
reasonable to admit that the formal referential constraint
declaration for matrix encoding is invalid, and therefore, should
be retracted from our schema design. This is not a big issue,
however, given that matrix encoding enjoys a lot more
sophisticated constraints than referential integrity.

Once again, we were able to establish direct links between parent
and children because we negated the values of a12 and a22. From
now on, we’ll refer to the generic matrix node encoding as











a11 − a12

a21 − a22

Now that we have informal referential integrity constraint,
querying parent and children nodes becomes obvious.

Parent is NULL?
In the adjacency model the root node refers to the
NULL parent. Does it mean that we can’t answer the
query “Find the root node’s parent”? In the matrix
model the root refers to the imaginary parent, and
the query “Find the root node’s parent” returns the
empty set as it supposed to.

16

Find all the employees who report directly to Jones.
select child.name
from MatrixTreeNodes parent, MatrixTreeNodes child
where parent.name = ‘Jones’
and child.a11 = parent.a12 and child.a21 = parent.a22
Who is Jones’ manager?
select parent.name
from MatrixTreeNodes parent, MatrixTreeNodes child
where child.name = ‘Jones’
and child.a11 = parent.a12 and child.a21 = parent.a22

Nested Intervals
Querying descendants has to be done via nested intervals. Given a
matrix











a11 − a12

a21 − a22

we calculate the interval boundaries as

,
a11

a21

 − a11 a12

 − a21 a22

Which of these two numbers is the interval lower bound and
which is the upper bound? Let’s compare them. Multiplying both
numbers to the product of their denominators and simplifying the
result, we would reduce the problem to answering if

 < 0 − a11 a22 a12 a21

Here is the determinant expression, again, which evaluates to 1.
Hence, interval boundaries are ordered as

 <
a11

a21

 − a11 a12

 − a21 a22

Next, how can we be sure those intervals are indeed nested? Let‘s
compare an arbitrary node interval ends with that of its children.
The nth child interval encoding is

 = .










a11 − a12

a21 − a22









 + n 1 -1
1 0











 − a11 () + n 1 a12 − a11

 − a21 () + n 1 a22 − a21

Therefore, the child interval boundaries are

,
 − a11 () + n 1 a12

 − a21 () + n 1 a22

 − a11 n a12

 − a21 n a22

Note, that the second endpoint is the same expression as the first
one, with n decremented by 1. Therefore, we have to check if

17

, ≤
a11

a21

 − a11 n a12

 − a21 n a22
 ≤

 − a11 n a12

 − a21 n a22

 − a11 a12

 − a21 a22

for any n ≥ 1. Both inequalities reduce to
, ≤ 0 − a11 a22 a12 a21 ≤ 0 n () − a11 a22 a12 a21

respectively. This proves that the parent node interval indeed
contains its child intervals.

The second property of nested intervals – sibling node intervals
being disjoint – can be proved in a similar fashion.

Descendants Query

Now that we have a nested intervals structure, we can move on to
querying node’s descendants. As a first approximation, let’s take
the descendants’ query in terms of nested sets as a template and
rewrite it in terms of nested intervals
select descendant.*
from MatrixTreeNodes descendant, MatrixTreeNodes node
where descendant.a11/descendant.a21 between node.a11/node.a21
 and (node.a11-node.a12)/(node.a21-node.a22)
and node.name = … -- predicate uniquely identifying a node

Unfortunately, this query would produce a wrong result. None of
the database vendors supports a rational number datatype6. The
ratios of integers would be silently cast into floating point
numbers with accompanying errors due to lack of precision. We
have to rewrite all of the expressions with divisions within the
scope of integer arithmetic
select descendant.*
from MatrixTreeNodes descendant, MatrixTreeNodes node
where descendant.a11*node.a21 >= descendant.a21*node.a11
and descendant.a11*node.a22 >= descendant.a21*node.a12
and node.name = … -- predicate identifying a node uniquely

When we discussed descendant query performance in the context
of nested sets, we emphasized index range scanning as an efficient
way to extract all the descendant nodes. This idea generalizes to
nested intervals, although we have to index interval boundaries.
Let’s enhance our tree encoding schema design with two function-
based indexes:
table MatrixTreeNodes (
 a11 integer,
 a12 integer,
 a21 integer,
 a22 integer
);

6 In fact, rational datatype is not even part of SQL standard.

18

CREATE INDEX idx_left ON MatrixTreeNodes(a11/a21);
CREATE INDEX idx_right ON MatrixTreeNodes((a11-a12)/(a21-a22));

We have to rewrite the query in such a way that optimizer can
leverage these indexes
select descendant.*
from MatrixTreeNodes descendant, MatrixTreeNodes node
where descendant.a11*node.a21 >= descendant.a21*node.a11
and descendant.a11*node.a22 >= descendant.a21*node.a12
and descendant.a11/descendant.a21
 between node.a11/node.a21 – 0.0000001
 and (node.a11-node.a12)/(node.a21-node.a22) + 0.0000001
and node.name = … -- predicate uniquely identifying a node

The constant 0.0000001 is designed to compensate for floating point
arithmetic rounding errors. It essentially is a minimal supported
mantissa. Please refer to your favorite database SQL manual in
order to find out the exact value. This way an index range scan
would capture all the nodes in the interval and, possibly, some
extra7. Then, the (small) list of nodes is filtered with the exact
condition.

Ancestor Criteria

Suppose we have two nodes: one encoded with matrix A, and the
other encoded with B. Node A is an ancestor of B if and only if
there is a (directed) path from A to B. In matrix terms, there has to
be a sequence of atomic matrices, so that after we multiply A to it,
we obtain matrix B. By the matrix multiplication associativity law,
we can combine all those atomic matrices into a single matrix X.
In other words, node A is an ancestor of B if there is a matrix X
such that

A X = B

If matrix A has inverse A-1 then, multiplying both sides to A-1 we get
X = A

-1
 B

The formula for the inverse of the 2×2 matrix is

 =










a11 − a12

a21 − a22

-1










− a22 a12

− a21 a11

where we leveraged the knowledge that our matrices always have
determinant 1. Therefore, given any nodes A and B we can always
find matrix X that encodes the path between them.

7 But not too many extra!

19

This is absurd, as node B might not necessarily be a descendant of
A! Let’s examine the phenomenon more closely. As usual, an
example might be handy. Consider the nodes A=1.7 and B=1.3.2.5 in
matrix encoding

 = . 







2 -1
1 0









8 -1
1 0









15 -2
8 -1

 = . . . 







2 -1
1 0









4 -1
1 0









3 -1
1 0









6 -1
1 0









107 -19
62 -11

Then, A-1B evaluates to








17 -3
74 -13

This is not a valid matrix encoding, however. It violates the
constraint that the entries in the upper row are greater than the
ones in the lower row.

Here is more detailed explanation why this is happening. Since
matrix A is decomposed into a product of (atomic) matrices, why
don’t we leverage the law of inverse of matrix product:

(P Q)
 -1

 = Q
-1
 P

-1

In our example

 = 





 . 








2 -1
1 0









8 -1
1 0

-1








8 -1
1 0

-1








2 -1
1 0

-1

Hence, A-1B expands into the following product of atomic matrices
and their inverses









8 -1
1 0

-1








2 -1
1 0

-1








2 -1
1 0









4 -1
1 0









3 -1
1 0









6 -1
1 0

where








2 -1
1 0

-1








2 -1
1 0

collapses into the identity matrix. This is due to the fact that both
A=.1.7 and B=.1.3.2.5 start with the same prefix .1. Therefore, the
above expression for A-1B simplifies to









8 -1
1 0

-1








4 -1
1 0









3 -1
1 0









6 -1
1 0

which can’t be further reduced. It is multiplication by an atomic
matrix inverse that violates the constraint.

20

In order to carry over this idea to SQL, we have to write A-1B in
generic form

 = .










− a22 a12

− a21 a11











b11 − b12

b21 − b22











 − b21 a12 b11 a22 − b12 a22 b22 a12

− + b11 a21 b21 a11 − + b22 a11 b12 a21

which translates to the descendants query from the previous
section
select B.*
from MatrixTreeNodes A, MatrixTreeNodes B
where B.a21*A.a12 - B.a11*A.a22 > -B.a11*A.a21 + B.a21*A.a11
and B.a12*A.a22 - B.a22*A.a12 > -B.a22*A.a11 + B.a12*A.a21
and A.name = … -- predicate identifying a node uniquely

Admittedly, this query is slightly more complicated than the
nested intervals version. The real contribution of this section is
introducing inverse matrices, which we will leverage later when
relocating subtrees.

Ancestors Query

Logically, finding all the ancestors can be accomplished by
swapping the roles of the two join operands in the descendants
query. Once again, such a query won’t be a good performer. In the
section on materialized path encoding we split the problem into
two parts: computing all the node encodings in the chain first, and
extracting all the nodes by those keys from the database, second.
As we have already seen a close tie between materialized path and
matrix encoding, it would come as no surprise that we can
perform the same trick with matrices.

Let’s look into the matrix encoding of parent and child nodes one
more time:

 = .










a11 − a12

a21 − a22









 + n 1 -1
1 0











 − a11 () + n 1 a12 − a11

 − a21 () + n 1 a22 − a21

As we have already seen, the child just inherited the entries a11 and
a21 from its parent. Therefore, to calculate the left row entries of
the parent, just take them from the right row of the child matrix.
The right row elements are the remainders of the division of the
parent left row by the right row. As an added bonus, we obtained
a sibling order number n.

Let’s demonstrate it on a familiar example of child node 1.3.2.5









107 -19
62 -11

21

The modulo function calculates remainders
19-mod(107,19) = 7

11-mod(62,11) = 4

Let’s double-check the results
107 = (5+1)*19 - 7

62 = (5+1)*11- 4

Hence, the parent encoding








19 -7
11 -4

We continue this process and find the grandparent








7 -2
4 -1

and great grandparent








2 -1
1 0

which happens to be the root – a matrix with a22 = 0. Now that we
have a list of ancestor matrices, how would we extract them from
database? One solution would be to build a dynamic query like
this:
select *
from MatrixTreeNodes
where a11=19 and a12=7 and a21=11 and a22=4
 or a11=7 and a12=2 and a21=4 and a22=1
 or a11=2 and a12=1 and a21=1 and a22=0

A better approach would be to store the ancestor encoding in a
temporary Ancestors table, and use the generic query:
select n.*
from MatrixTreeNodes n, Ancestors a
where n.a11=a.a11 and n.a12=a.a12 and n.a21=a.a21 and n.a22=a.a22

Some RDBMS engines allow programming table functions, so
that the table of ancestor encodings can be produced as an output
of such a function. Syntactically, the query would become
select n.*
from MatrixTreeNodes n, Table(Ancestors(49,9,38,7)) a
where n.a11=a.a11 and n.a12=a.a12 and n.a21=a.a21 and n.a22=a.a22

Given the entries a11=107, a12=19, a21=62, and a22=11, the Ancestors
table function is supposed to calculate the chain of ancestor
encodings.

Converting Matrix to Path

22

In previous section we looked at the identity connecting the parent
and child encoding

 = .










a11 − a12

a21 − a22









 + n 1 -1
1 0











 − a11 () + n 1 a12 − a11

 − a21 () + n 1 a22 − a21

and mentioned that a sibling order number n is a remainder of
integer division floor((a11*(n+1)-a12)/a12). In our example, the node
1.3.2.5 is the 5th children of the node 1.3.2:

floor(107/19) = 5

floor(62/11) = 5

Working all the way to the root we’ll find the other numbers in the
path.

The path is generated in the order from leaf to root. Perhaps, it
would be more convenient to generate it in the opposite order. The
procedure is essentially the same, but applied to the transposed
matrix.

Inserting Nodes

So far our attention was on queries. But how do we fill in the tree
with nodes? The new node location is unambiguously defined by
node’s parent, and node’s position among the other children.
Normally, given a parent, one would like to attach a new node as
the youngest child. Therefore, node’s insertion is accomplished in
two steps:

1. Query all the immediate children and find the oldest child.
Select max(floor(a11/a12)) as N from MatrixTreeNodes
where a11 = :parent_a12
and a21 = :parent_a22

where :parent_a12 and :parent_a22 are the host variables of your
parent node encoding.

2. Insert the node at the n-th position:
insert into MatrixTreeNodes (a11,a12,a21,a22) values
(:parent_a11*(:N+1) - :parent_a12,
 :parent_a11,
 :parent_a21*(:N+1) - :parent_a22,
 :parent_a21);

These two steps can be combined into a single insert as select
statement.

23

Relocating Tree Branches

This is the section where matrix algebra really shines. Consider a
tree branch located at node encoded with matrix A, and suppose
we want to move it to the new location under node B. How would
the encoding of some node C (which is located in the tree branch
under A) change?

That is quite an easy task for materialized path encoding. First,
find out the path from the node A to C. Then, append it to the node
B. This idea transfers to matrices almost literally. The encoding of
the node C is a product of it’s ancestor A and some other matrix

A X = C

Matrix X corresponds to the path from A to C. This path is
appended to path B, hence is we multiply matrices and obtain the
resulting encoding

B X

The unknown matrix X is calculated via inverse matrix, so we get
the final answer

B A
-1

C

In order to be able to translate it into SQL, let’s expand the
answer component-wise

 . .










b11 − b12

b21 − b22











− a22 a12

− a21 a11











c11 − c12

c21 − c22

 =

 + ()− + b11 a22 b12 a21 c11 () − b11 a12 b12 a11 c21[,

− − ()− + b11 a22 b12 a21 c12 () − b11 a12 b12 a11 c22]

 + ()− + b21 a22 b22 a21 c11 () − b21 a12 b22 a11 c21[,

− − ()− + b21 a22 b22 a21 c12 () − b21 a12 b22 a11 c22]

which can be coded in SQL as
update MatrixTreeNodes c
set c.a11 = (:b12*:a21-:b11*:a22)*c.a11
 +(:b11*:a12-:b12*:a11)*c.a21
 c.a12 = (:b12*:a21-:b11*:a22)*c.a12
 +(:b11*:a12-:b12*:a11)*c.a22
 c.a21 = (:b22*:a21-:b21*:a22)*c.a11
 +(:b21*:a12-:b22*:a11)*c.a21
 c.a22 = (:b22*:a21-:b21*:a22)*c.a12
 +(:b21*:a12-:b22*:a11)*c.a22
where c.a11*:a21 >= c.a21*:a11 -- all the descendants of matrix
and c.a11*:a22 >= c.a21*:a12 -- [[:a11,:a12][:a21,:a22]]

24

Ordering
So far we emphasized how to query the tree structure in various
encodings. The presentation layer often demands an ordered
output. The difficulty here is that the end user is expected to
specify some ordering criteria at runtime, and the order might not
conform to the order encoded in the tree structure. For example,
consider a familiar hierarchy of employees with nested sets
encoding

 ENAME LEFT RIGHT
 KING 1 20

 JONES 2 7
 SCOTT 3 6
 ADAMS 4 5
 FORD 8 11
 SMITH 9 10
 BLAKE 12 19
 ALLEN 13 14
 WARD 15 16
 MARTIN 17 18

The tree is effectively ordered by the LEFT column. A user might
ask to display it (locally) ordered by the employee names at each
hierarchy level. It is easy to see that the (global) ordering criteria
is essentially the path from the root to a node, which is made of
concatenated names

 ENAME PATH
 KING KING

 BLAKE KING.BLAKE
 ALLEN KING.BLAKE.ALLEN
 MARTIN KING.BLAKE.MARTIN
 WARD KING.BLAKE.WARD
 JONES KING.JONES
 FORD KING.JONES.FORD
 SMITH KING.JONES.FORD.SMITH
 SCOTT KING.JONES.SCOTT
 ADAMS KING.JONES.SCOTT.ADAMS

Unlike the materialized path, the path of concatenated names must
be generated dynamically, and the technical problem here is
aggregating the names into a path string. Fortunately, we have
learned the LIST aggregate function in chapter 3. Therefore, we
proceed by taking the familiar nested sets query, which returns a
list of all node ancestors, and aggregating those lists into paths
SELECT ii.left
 ,CONCAT_LIST(CAST(COLLECT('.'||i.ename) AS strings)) path

25

javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=0;document.mainform.action+='#'+'_00';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=1;document.mainform.action+='#'+'_01';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=2;document.mainform.action+='#'+'_02';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=3;document.mainform.action+='#'+'_03';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=4;document.mainform.action+='#'+'_04';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=5;document.mainform.action+='#'+'_05';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=6;document.mainform.action+='#'+'_06';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=7;document.mainform.action+='#'+'_07';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=8;document.mainform.action+='#'+'_08';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=9;document.mainform.action+='#'+'_09';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=0;document.mainform.action+='#'+'_00';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=6;document.mainform.action+='#'+'_06';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=7;document.mainform.action+='#'+'_07';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=8;document.mainform.action+='#'+'_08';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=9;document.mainform.action+='#'+'_09';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=1;document.mainform.action+='#'+'_01';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=4;document.mainform.action+='#'+'_04';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=5;document.mainform.action+='#'+'_05';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=2;document.mainform.action+='#'+'_02';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=3;document.mainform.action+='#'+'_03';document.mainform.submit()

FROM Employees i, Employees ii
where ii.left between i.left and i.right
group by ii.left;

On a cautionary note, this particular implementation of the LIST
aggregate is agnostic of the order of the aggregation summands.
The reader must double check that his favorite string
concatenation method concatenates summands in the right order.

Ordering by dynamic path seems to be a natural solution until we
are asked to order by numeric criteria, salary, for example.
Numbers sorted as strings go in wrong order. They have to be
padded. The other concern is negative values. All these
inconveniences make the dynamic path solution not quite
satisfactory.

An alternative solution is recreating hierarchy dynamically with
the structure, which is conforming to the required ordering. At
first thought, recreating hierarchy smells performance problems,
but our rationale hinges upon a typical usage scenario. It must be
the GUI that wants to display ordered hierarchy, and GUI
rendering capabilities impose common sense limits on the tree
size. Even if GUI were able to display the whole tree, then an end
user would be overwhelmed by the volume of information that he
were presented “at once”. It is fair to assume that a reasonably
designed GUI would display only a local portion of a hierarchy,
no matter how big the whole hierarchy might be.

Therefore, the issue of hierarchy ordering should be considered
within the scope of application design. An application
programmer designs a method of hierarchy navigation and
display, which guarantees that the GUI displays only a small part
of the hierarchy. A familiar example is an organizational chart
where no more than two levels of hierarchy is displayed at each
tree node: employee subordinates, and his supervisor. Ordering
such a puny tree is a laughably easy exercise for a reader who has
advanced thus far in the book.

An alternative design is a dynamic tree widget where each node
exists in one of the two states: expanded or collapsed. The
Windows file manager utility is a typical example. In principle, a
directory tree could be expanded fully, but it is unreasonable to
expect that there is a user who is up to the challenge of manually
expanding a hierarchy of any significant size to the full depth.

26

Exotic Labeling Schemas
Tree encoding area is flourishing with various methods. It is so
easy to invent yet another tree labeling schema! This contrasts to
general graphs, which appear to defy encoding ideas. This section
reviews others, arguably, less practical tree encoding methods.

Dietz Encoding
One natural way to label a tree is pre-order traversal (fig 5.10).

Figure 5.10: Pre-order traversal.
It is natural because the tree nodes are indexed in the depth-first
order, and tree node records are is depth-first order in a nearly
ubiquitous tree display with levels laid out horizontally

 Employee Name Preorder#
 KING 1

 JONES 2
 SCOTT 3
 ADAMS 4
 FORD 5
 SMITH 6
 BLAKE 7
 ALLEN 8
 WARD 9
 MARTIN 10

Post-order traversal is a little bit less intuitive way of navigating a
tree. The nodes are visited in the same order, but node’s index
number assignment is postponed until all node’s children are
indexed.

1
2

543

27

javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=0;document.mainform.action+='#'+'_00';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=1;document.mainform.action+='#'+'_01';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=2;document.mainform.action+='#'+'_02';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=3;document.mainform.action+='#'+'_03';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=4;document.mainform.action+='#'+'_04';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=5;document.mainform.action+='#'+'_05';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=6;document.mainform.action+='#'+'_06';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=7;document.mainform.action+='#'+'_07';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=8;document.mainform.action+='#'+'_08';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=9;document.mainform.action+='#'+'_09';document.mainform.submit()

Figure 5.11: Post-order traversal.

Dietz tree encoding assigns a pair of indexes (preorder#,
postorder#) to each node.

It is immediately evident that Dietz tree encoding is volatile.
Inserting a new node disrupts existing encodings, both pre-order
and post-order.

Querying a Dietz encoded tree is based upon the following
ancestor criterion: node x is an ancestor of y if and only if
x.preorder# ≤ y.preorder# and y.postorder# ≤ x.postorder#. This
criterion appears to be identical to that of nested intervals,
although unlike nested intervals neither preorder# < postorder#, nor
preorder# < postorder# is universally true for all the nodes.

Let's look at two-dimensional picture of Dietz encoding. Let's
assume that preorder# is the horizontal axis, and postorder# is the
vertical one (fig 5.12).

Figure 5.12: Two dimensional view of Dietz
encoding. A root node preorder#=1, postorder#=5

Preorder#

5
3

421

Postorder#

28

has all it’s descendants within the cone
preorder#>1, postorder#<5.
Each node x has its descendant nodes y bounded within the two-
dimensional cone defined by the two inequalities x.preorder# ≤
y.preorder# and y.postorder# ≤ x.postorder#. For nested intervals we
would additionally have preorder# < postorder# or, in geometric
terms have all the nodes above the diagonal preorder# = postorder#.
If we move all the tree nodes above the diagonal somehow, then
we’d succeed transforming Dietz encoding into nested intervals.
Linear mapping

left = total#nodes - postorder# +1

right = 2 ⋅ total#nodes - preorder#

achieves that goal (fig 5.13).

Figure 5.13: Dietz encoding linearly transformed to
have all the tree nodes above the main diagonal –
to nested interval encoding.

Pre-order – Depth Encoding
Yet another way to label the tree is storing combination of pre-
order index number and level. Let’s glance over the basic queries,
though.

1. To find out node’s parent, select all the nodes on the upper
level and, then, filter out all the nodes beneath, and choose the one
with maximum preorder# among the rest. In our familiar example

 Employee Name Preorder#
 KING 1

Left

Right

29

javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=0;document.mainform.action+='#'+'_00';document.mainform.submit()

 JONES 2
 SCOTT 3
 ADAMS 4
 FORD 5
 SMITH 6
 BLAKE 7
 ALLEN 8
 WARD 9
 MARTIN 10

we search for Smith‘s parent among the upper level nodes: Scott,
Ford, Allen, Ward and Martin. We reject Allen, Ward and Martin as they
all have preorder# greater than Smith. Between Scott and Ford the
latter has greater preorder#.

2. To find out all the descendants we find the next node on the
same level, and the next node on the parent level, choose the
closer of the two and, then, select all the nodes between the given
node and the chosen one.

For Scott we pick up Ford and Blake, and then select every node
between Scott and Ford (exclusively).

3. Finding all of a node's children is just filtering out of case #2
the nodes with the proper level.

4. Finding a path to the root is just selecting all the predecessor
nodes, grouping them by level, and extracting maximum sequence
numbers per each group.

This is, again, is a volatile encoding, which kills our further
interest in detailed exploration.

Reversed Nesting
Let’s revise the nested sets example in fig. 5.2. This time instead
of a parent set containing its children sets, we demand parent set
to be contained in its children (fig 5.14).

30

javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=1;document.mainform.action+='#'+'_01';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=2;document.mainform.action+='#'+'_02';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=3;document.mainform.action+='#'+'_03';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=4;document.mainform.action+='#'+'_04';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=5;document.mainform.action+='#'+'_05';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=6;document.mainform.action+='#'+'_06';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=7;document.mainform.action+='#'+'_07';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=8;document.mainform.action+='#'+'_08';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=9;document.mainform.action+='#'+'_09';document.mainform.submit()

Figure 5.14: Nested sets structure for the tree in
fig. 5.2a with set containment reversed. Now, a
child set is required to contain its parent.
This variation of Nested Sets encoding is non-volatile. Once
again, there is no direct support of a set datatype on most
platforms, so we have to find a workaround. Armed with Boolean
algebra we represent each set as a Boolean vector, the latter can
be stored as plain strings. For example, {0,1,4,6} becomes
‘1100101’.

In general, set containment doesn’t correspond to any standard
operation on strings. Sets of tree nodes are special, however (fig
5.15).

Figure 5.15: A different view of the reverse nested
sets structure for the tree in fig. 5.14. A set is
indistinguishable from path to the root.
Set elements correspond to tree nodes, and each set is associated
with a path from the root to a node. Hence, set containment for
reverse nested sets is the same as the substring operation. The

1.1
1.2

1.1.1 1.2.1

1

C={1,2,3} B={1,2}

E={1,5}

A={1} D={1,2,4}

31

methods for querying materialized path encoded trees that we
studied earlier must work for reverse nested sets as well.

Roji Thomas suggested yet another tree encoding, which is closely
related to reverse nested sets. In his method each node is labeled
in two steps. First, each node is designated a unique prime
number. Then, each node is encoded with a number a product of
the primes on the path from the node to the root. The node A is
ancestor of the node B whenever encoding of A divides B.

By the fundamental theorem of arithmetic, every integer has a
unique prime factorization:

N = 2α
1⋅3α

2⋅5α
3⋅…⋅pk

α
k

It is immediate that the vector of prime orders (α1, α2, α3,…, αk) in
Roji Thomas case is Boolean, and his encoding is essentially
reverse nested sets. Without establishing this connection our
investigation would not be complete.

When studying any encoding scheme, it is natural to start with the
expressive power, verifying that any hierarchical query can be
expressed in terms of new encoding. The second concern is
efficiency, with emphasis on access path via index. It might be not
obvious how to index tree nodes in Roji Thomas’s encoding, and
it is the connection to reverse nested sets that solves the problem.

Ordered Partitions
Given a positive integer N, in how many ways it can be expressed
as a sum of smaller integers? Assume the order of the summands
is important. Although this problem seems to be too distant from
database practice, it nevertheless leads to yet another encoding
method.

First of all, ordered integer partition is essentially materialized
path. Let’s enumerate all possible partitions by arranging them
into the following table

 Encodin
g

 Partition N

 1 1 1
 2 1+1 2
 3 2 2
 4 1+1+1 3
 5 1+2 3

32

 6 2+1 3
 7 3 3
 8 1+1+1+1 4
 9 1+1+2 4
 10 1+2+1 4
 11 1+3 4
 12 2+1+1 4
 13 2+2 4
 14 3+1 4
 15 4 4
 16 1+1+1+1

+1
 5

This enumeration is generated recursively. All the partitions of N+1
are generated from the partitions of N in either way:

 putting an extra component with 1 in front of all of the other
components of N, or

 incrementing the first component of each partition of N by 1.
Then, it follows that partitions encoded with the even numbers
have 1 as the last component. Indeed, as long as we have evenly
encoded partitions of N to end up with 1, this property is carried
over to the partitions of N+1. Since we associate partitions with
materialized paths, this means the oldest child encoding is twice
that of the parent!

For odd encodings, let’s decrement them by 1, first. This would
produce an even encoding – the case that we have studied already.
Compared to the former odd encoded partition, the latter even
encoded partition has an extra component – the trailing 1. Both are
partitions of the same number N, however. This can be achieved
only if the last component of the odd encoding is the sum of the
last component and the last but one component of the even
encoding. For example, the partition encoded as 11, i.e. 1+3, has
the last component 3 to be represented as 2+1 in the partition
number 10, i.e. 1+2+1. Then, by halving the even encoding, we’ll
get the encoding of the younger sibling (relative to the original
odd encoded node)!

Although these discoveries allow defining an ancestor relation
which could serve as a basis for hierarchical queries, we must not
forget about performance. It is unclear if the integer partition
based encoding schema admits an efficient querying node’s
descendants. Once again, our benchmark is nested intervals

33

encoding, where all the descendants can be accessed via index
range scan. It turns out that integer partition encoding is very
closely related to nested intervals encoding with dyadic rational
numbers; in fact, there is a transparent mapping between them. I
won’t pursue this venue here any longer, however, and refer an
interested reader to a series of my papers published by dbazine.com.
Once more, from practical perspective Farey fractions provide
more economical opportunity to organize a system of nested
intervals.

Case Study: Homegrown C function
call profiler

A profiler is a common tool for performance analysis. It
determines how long certain parts of the program take to execute,
how often they are executed, and generates the tree (or graph) of
function calls. Typically this information is used to identify the
portions of the program that take the longest to complete. Then,
the time-consuming parts are expected to be optimized to run
faster.

If the reader begins to suspect that there are plenty of tools doing
the job, then (s)he’s absolutely right. Those tools, however, are
just programs. They build canned reports. We’ll approach the
problem from a database-centric angle. Let’s place the profiling
data into the database, and then we can query it any way we like!

First, we need to gather the data. Linux/Unix pstack is a primitive
utility that does the job. We can query the calls stack repeatedly
with a shell script like this
integer i=0
while ((i <= 999));
do
 pstack -F 25672 | tee -a pstack.trc;
 ((i = i + 1));
done

where the magic number 25672 is the process number to attach to.

The output is streamed into a file with the content like this:
25672: oracleEMR920U3 (DESCRIPTION=(LOCAL=YES)
(ADDRESS=(PROTOCOL=beq)))
 009d5930 appdrv (ffbe82d8, 180000, ffbe82d8, feb5e794, 0, ffbe8351)
 009fd85c kkofmx (0, 0, 0, 0, fe7bebb4, 2a38a43e) + 624
 009f834c kkonxc (fe7bebb4, fe4b3124, …) + 8c
 009fc65c kkotap (200000, 0, 0, 0, 1, 4000) + 1444
 009f1154 kkojnp (0, 0, 0, 0, 108, 0) + 14dc
 009ef9e8 kkocnp (fe7bebb4, 1, 0, 0, 1f, 7c) + f0
…

34

 008f4b5c opidrv (3c, 4, ffbef504, 2f6c6f67, 0, 2f) + 1ec
 001d666c sou2o (ffbef514, 3c, 4, ffbef504, 0, 0) + 10
 001cf59c main (2, ffbef5dc, ffbef5e8, 30d2000, 0, 0) + ec
 001cf488 _start (0, 0, 0, 0, 0, 0) + 108
25672: oracleEMR920U3 (DESCRIPTION=(LOCAL=YES)
(ADDRESS=(PROTOCOL=beq)))
 00a1c6a4 kkorbp (ffbe8e3c, 0, ffffffff, 0, 0, ffbe8e61) + 808
 00a1f230 kkobrfak (ffbe8e3c, ffbe8e60, fe39a42c, 0, 0, 1) + 8c
 00a1d92c kkofbp (2a3bef38, 0, 2a3bef38, 0, 0, 1) + 584
 00a22ddc kkobmp (10, fe4b39e4, 23, fe4df610, 0, fe4b3ac4) + bc
…
 008f4b5c opidrv (3c, 4, ffbef504, 2f6c6f67, 0, 2f) + 1ec
 001d666c sou2o (ffbef514, 3c, 4, ffbef504, 0, 0) + 10
 001cf59c main (2, ffbef5dc, ffbef5e8, 30d2000, 0, 0) + ec
 001cf488 _start (0, 0, 0, 0, 0, 0) + 108
25672: oracleEMR920U3 (DESCRIPTION=(LOCAL=YES)
(ADDRESS=(PROTOCOL=beq)))
 00a1f218 kkobrf (ffbe8e3c, ffbe8e60, 0, 0, 0, 0) + 74
 00a1d690 kkofbp (2a3bef38, 0, 2a3bef38, 0, 0, 1) + 2e8
 00a22ddc kkobmp (10, fe4b39e4, 23, fe4ff610, 0, fe4b3ac4) + bc
 009fc678 kkotap (200000, 0, 0, 0, 1, 4000) + 1460
…

The detailed file structure is not important. What is essential for
our analysis is the sequence of function calls (emphasized in bold)
within each section (demarcated with italic delimiters).
Specifically, we would like to move the data to the database with
the following schema:
table function_sequences (
 stack_id integer, -- section
 id integer, -- sequence #
 func varchar2(100) -- function name
);

Our sample data snippet is now a part of the database table
select * from function_sequences

 STACK_ID ID FUNC
 1 1 appdrv
 1 2 kkofmx
 1 3 kkonxc
 1 4 kkotap
 1 5 kkojnp
 1 6 kkocnp
 … … …
 1 28 opidrv
 1 29 sou2o
 1 30 main
 1 31 _start
 2 1 kkorbp
 2 2 kkobrfak
 2 3 kkofbp
 2 4 kkobmp
 … … …
 … … …
 2 29 opidrv
 2 30 sou2o
 2 31 main

35

 2 32 _start
 3 1 kkobrfak
 3 2 kkofbp
 3 3 kkobmp
 3 4 kkotap
 … … …

The data mover implementation is rather boring. We read the
input file line by line. If the line starts with the magic number
25672, then we are parsing a section delimiter string so we
increment the stack_id counter, and initialize the id counter.
Otherwise, we read the function name and increment the id
counter.

It was easy to implement the function ids increasing with each
line scanned, but their order is inconsistent with stack slot
numbering. It is convenient to relabel the functions, so that the
root function _start is always labeled with id = 1. The new
view/table name – Stacks – reflects the fact that our data is now
conventionally aligned with the stack data structure:
create table Stacks as
select s.stack_id id, height - s.id + 1 pos, func
 from function_sequences s, (
 select stack_id, max(id) height from function_sequences
 group by stack_id
) ss
where s.stack_id = ss.stack_id
;

We have finally arrived at an interesting aspect of the problem,
the reporting. How do we combine all these stacks into a
meaningful call graph? In particular, what defines the function
location in the call graph? Having learned so much about
materialized path encoding already, we’ll find the answer hardly
surprising. It is a path assembled from of all the names on the call
stack that we are after.

Technically, functions are concatenated with the list8 aggregate
function
select id, list('.'||func)
 over (partition by id order by pos) path,
 pos, func
from stacks;

 ID PATH FUNC
 1 ._start _start
 1 ._start.main main
 1 ._start.main.sou2o sou2o

8 Reminder: the list string concatenation function was defined in the section dedicated to
user-defined aggregates of chapter 3.

36

 1 ._start.main.sou2o.opidrv opidrv
 1 … kglobld
 1 ._start.main.sou2o.opidrv. … .kkoqbc.kkooqb.kkocnp kkocnp
 1 ._start.main.sou2o.opidrv. …

.kkoqbc.kkooqb.kkocnp.kkojnp
 kkojnp

 1 ._start.main.sou2o.opidrv. …
.kkoqbc.kkooqb.kkocnp.kkojnp.kkotap

 kkotap

 1 ._start.main.sou2o.opidrv. …
.kkoqbc.kkooqb.kkocnp.kkojnp.kkotap.kkonxc

 kkonxc

 1 ._start.main.sou2o.opidrv. …
.kkoqbc.kkooqb.kkocnp.kkojnp.kkotap.kkonxc.kkofmx

 kkofmx

 1 ._start.main.sou2o.opidrv. …
.kkoqbc.kkooqb.kkocnp.kkojnp.kkotap.kkonxc.kkofmx
.appdrv

 appdrv

 2 ._start _start
 2 ._start.main main
 2 ._start.main.sou2o sou2o
 2 ._start.main.sou2o.opidrv opidrv
 2 … opiodr
Now that we have a materialized path, it can be used to group the
stack tree nodes with identical paths together, and/or order the
nodes to get a nice indented tree layout
select func, pos-1 depth, count(1) from (
 select id, list('.'||func)
 over (partition by id order by pos) path, pos, func
 from
 stacks
) group by path, pos, func
order by path;

 FUNC COUNT(1)

 _start 632
 main 632
 sou2o 632
 opidrv 632
 opiodr 632
 opiino 632
 opitsk 632
 opikndf2 79
 nioqrc 79
 nsdo 78
 nsrdr 78
 nsprecv 78
 sntpread 78
 read 78
 nsdosend 1
 nsdo 1
 nsdofls 1

37

javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=0;document.mainform.action+='#'+'_00';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=1;document.mainform.action+='#'+'_01';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=2;document.mainform.action+='#'+'_02';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=3;document.mainform.action+='#'+'_03';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=4;document.mainform.action+='#'+'_04';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=5;document.mainform.action+='#'+'_05';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=6;document.mainform.action+='#'+'_06';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=7;document.mainform.action+='#'+'_07';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=8;document.mainform.action+='#'+'_08';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=9;document.mainform.action+='#'+'_09';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=10;document.mainform.action+='#'+'_010';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=11;document.mainform.action+='#'+'_011';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=12;document.mainform.action+='#'+'_012';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=13;document.mainform.action+='#'+'_013';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=14;document.mainform.action+='#'+'_014';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=15;document.mainform.action+='#'+'_015';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=16;document.mainform.action+='#'+'_016';document.mainform.submit()

 nspsend 1
 _write 1
 ttcpip 553
 opiodr 553
 kpoal8 553
 kpooprx 551

 …

The count aggregate is proportional to the time the execution has
spent on this particular stack tree node. From there you would
typically search for hotspot nodes, where a significant part of the
execution time is spent.

Summary
 Nested Sets encoding is volatile, and not efficient for finding

the chain of node’s ancestors.

 The Stern-Brokot tree provides the most economical way to
split intervals. This idea leads to matrix encoding.

 Matrix encoding combines the two models: adjacency relations
and nested intervals. It is an especially appealing alternative to
materialized path encoding.

Exercises
1. Prove that in matrix encoding sibling node intervals are

disjoint.

2. It is very tempting to write the ancestors query like this
select *
from MatrixTreeNodes
where a11 IN (19,7,2)

and a12 IN (7,2,1)
 and a21 IN (…,…,…)
 and a22 IN (…,…,…)

Explain why this query is flawed.

3. Implement the Ancestors table function in an RDBMS of your
choice.

4. Adapt the descendants query to return the list of node’s
immediate children, that is

38

javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=17;document.mainform.action+='#'+'_017';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=18;document.mainform.action+='#'+'_018';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=19;document.mainform.action+='#'+'_019';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=20;document.mainform.action+='#'+'_020';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=21;document.mainform.action+='#'+'_021';document.mainform.submit()
javascript:document.mainform._0isTreeTableEvent.value=true;document.mainform._0toggledNode.value=22;document.mainform.action+='#'+'_022';document.mainform.submit()

Select all the node’s descendants, which are on the next level.

Compare it to the query that leverages informal referential
integrity constraint.

5. Combine the two matrix encoding node insertion steps into a
single insert as select SQL statement.

6. Explore matrix encoding with atomic matrices of a kind









n 1
1 0

7. The atomic matrices from exercise 8 are symmetric -- they
remain unchanged under transposition. Prove that matrix
transposition of an arbitrary node encoding corresponds to its
inversed materialized path. (Then, symmetric matrix encoding
corresponds to palindrome path!) Hint: matrix transposition
law

(A B)
T
 = B

T
 A

T

8. Explore matrix encoding with atomic matrices of a kind









 + n 1 i
i 0

9. Prove that linear transformation of Dietz encoding indeed
meets all the nested interval constraints.

10. Consider the chain of ancestors of the node A, and the chain of
ancestors of the node B. Among their common ancestors there
exists the oldest one, which is called the nearest common
ancestor. Write the nearest common ancestor query in matrix
tree encoding.

39

	Parent and Children Queries
	Descendants Query
	Ancestor Criteria
	Ancestors Query
	Converting Matrix to Path
	Inserting Nodes
	Relocating Tree Branches

