
5
Trees

Graphs and trees are ubiquitous data structures. They don’t easily 
fit into Relational model; therefore querying them requires a little 
bit more ingenuity than routine select-project-join. 

Compared to graphs, trees are relatively simple creatures.  They 
are easy to draw. Almost any problem involving a tree structure is 
easy to solve. Algorithms on trees are generally fast. Edges, which 
are very important in graph definition, can be almost completely 
ignored for a tree. The tree structure could be encrypted in the 
nodes alone, and those tree encodings could be invented almost on 
daily basis. 

In most of the chapter we’ll focus on tree encodings. The rest is 
dedicated  to  smaller  problems  like  node  ordering  by  ad-hoc 
criteria.  Several  problems  are  postponed  to  the  next  chapter, 
where  we  study  hierarchical  aggregate  queries  and  tree 
comparison.  A  reader  who  is  primarily  looking  forward  to 
developing  some  intuition  with  a  vendor-specific  hierarchical 
SQL extension (be that the connect by, or recursive with operator) 
is advised to proceed to the next chapter. 

Materialized Path
Tree is a subclass of graph. We won’t explore this idea in any 
depth in this chapter,  however, because, once again, graphs are 
much more complex entities with their own set of problems. For 
all  practical  purposes  a  tree  can  be  defined  as  a  set  of  nodes 
arranged  into  a  hierarchical  structure  via  tree  encoding.  The 
purpose of tree encoding is to assign a special label to each node 
and manipulate tree nodes – i.e. query and update – by means of 
those  labels.  Informally,  each  node  is  equipped  with  a  global 
positioning  device  that  transmits  the  node’s  coordinates.  Once 
each  node’s  geographical  position  is  known,  we  can  answer 
typical queries like 
Count all the employees who are located south of the “King”, in other words, who report 
directly or indirectly to him. 
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Without a doubt you are already familiar with at least one such 
encoding: the UNIX directory structure1. Each file location in the 
hierarchy  is  defined  by  an  absolute  pathname --  a  chain  of 
directories that users have to navigate from the root to the leaves 
of hierarchy. For example,  /usr/bin/ls  is  an absolute pathname. 
On the top of the directory structure there is a directory called usr, 
which contains a directory called bin, which contains a file called 
ls.

This  seemingly straightforward idea  can be applied to any tree 
structure.  First,  discover  (or  cook up)  some unique key, which 
would distinguish a node’s  children.  Then,  list  all  the  ancestor 
unique keys as the node’s encoding. This list can be represented 
as a string (then, we have to agree upon string delimiter), or as a 
collection datatype. We’ll refer to this encoding as  materialized 
path. The adjective materialized emphasizes the fact that the path 
is  stored.  If  the path is  built  dynamically, then the adjective is 
omitted and we refer to this dynamically generated encoding as 
just path2. 

 Employee Name  Encoding 
 KING  1 

     JONES  1.1 
         SCOTT  1.1.1 
             ADAMS  1.1.1.1 
         FORD  1.1.2 
             SMITH  1.1.2.1 
     BLAKE  1.2 
         ALLEN  1.2.1 
         WARD  1.2.2 
         MARTIN  1.2.3 

Table  5.1:  Organization  chart  encoded  with 
materialized  path.  We  enumerated  each  node’s 
children with integer numbers, and designated dot 
as a delimiter. 
At this moment,  we already have enough expressive power for 
basic queries: 
1. An employee JONES and all his (indirect) subordinates:
select e1.ename from emp e1, emp e2
where e1.path like e2.path || '%'
and e2.ename = 'JONES'

1 Ignoring symbolic links
2 The reader undoubtedly noticed the parallel to view/materialized view terminology. 
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2. An employee FORD and chain of his supervisors:
select e1.ename from emp e1, emp e2
where e2.path like e1.path || '%'
and e2.ename = 'FORD'

Usually, query performance is unrelated to the form the query is 
written  in  SQL.  In  principle,  a  query  optimizer  has  powerful 
techniques for transforming any query into an equivalent, better 
performing expression. Not in this case!

The  first  query  is  fine.  Matching  a  string  prefix  is  roughly 
equivalent to a range check
select e1.ename from emp e1, emp e2
where e1.path between e2.path and e2.path || chr(255)
and e2.ename = 'JONES'

where  chr(255) is  the  last  ASCII  code.  A reasonable  execution 
strategy  would  be  to  find  an  (unique)  employee  record  e2 
matching  ename='JONES', first. Finding a unique record is typically 
done via index lookup, in other words, extremely fast. The first 
query execution  step  establishes  the  range  of  paths,  which  the 
e1.path encoding has to fall  into.  If  this  range of  paths doesn’t 
contain too many paths,  then  the  best  way to  find  them is  to 
iterate via index range scan. The more subordinates JONES has, the 
longer it would take to output them. In other words, the speed of 
this query is determined by size of the output – there is hardly a 
more efficient way to express this query.

The equivalent range check rewriting is valid for the second query 
as well 
select e1.ename from emp e1, emp e2
where e2.path between e1.path and e1.path || chr(255)
and e2.ename = 'FORD'

Unlike the previous case, however, we know not the interval of 
paths,  but  the path  e2.path itself,  which we are going to match 
against all the intervals of the  e1 table. Certainly, there wouldn’t 
be that many paths that match with e2.path, because the chain of 
ancestors in a balanced hierarchy is never too long. Yet, there is 
no obvious index that could leverage this idea. The condition of a 
point  belonging  to  an  interval  consists  of  the  two  predicates 
e2.path >= e1.path and e2.path <= e1.path || chr(255). A normal B-
Tree index on e1.path column could be leveraged while processing 
the first predicate only, and it would have to scan a half of the 
records on average3. 

3 There are specialized indexing schemes – R-Tree, Interval tree, etc – that approach this 
problem. It remains to be seen if they could ever enjoy the same level of adoption as B-Tree 
and bitmapped indexes.
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The critical observation is that a chain of ancestors is encoded in 
the node’s materialized path encoding. We don’t have to access 
the database in order to tell that the ancestors of the node 1.5.3.2 
are  nodes  1.5.3,  1.5,  and  1.  A simple  function  could parse  the 
materialized path.  If  this  function is  implemented on the  client 
side, we can build a dynamic SQL query
select ename from emp 
where path in ('1.5.3', '1.5', '1')

On the server side, the implementation could be little bit  more 
sophisticated.  The  list  of  ancestors  can  be  implemented  as  a 
temporary table built by a table function. This sketchy idea will be 
developed in  greater  detail  in  later  sections,  where  we’ll  study 
much more elegant encodings than materialized path.

We conclude this section with the materialized path tree encoding 
schema design:
table TreeNodes ( 
   path varchar2(2000),
   …
)

This  schema  leaves  the  structure  of  TreeNodes.path column 
unspecified.  Ideally, we could proceed and add some constraints, 
but,  once  again,  much  nicer  development  that  doesn’t  require 
string parsing techniques awaits us ahead.

Finding a set of intervals covering a 
point

Querying ranges is asymmetric from performance 
perspective. It is easy to answer if a point falls 
inside some interval, but it is hard to index a set of 
intervals that contain a given point. Applied to 
nested sets we run into a difficulty answering 
queries about node’s ancestors.
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Nested Sets
Another approach to a tree structure is modeling it as nested sets.

Figure 5.2a: A tree. 

Figure 5.2b: Nested sets structure for the tree at 
fig. 5.2a. Set elements are boxes, and sets are the 
ovals including them. Every parent set contains its 
children sets. 
Set containment could clearly accommodate any tree. Whenever 
we need to grow a tree by adding a new child, we just nest one 
more set into appropriate parent set.

Naive  nested  sets  implementation  would  materialize  a  set  of 
elements at each node. Aside from the fact that the RDBMS of 
your choice has to be capable operating with sets at the datatype 
level4, this implementation would be quite inefficient. Every time 
a node is inserted into a tree, the chain of all the containing sets 
should be expanded to include (at least) one more element. 

A  more  sophisticated  variant  of  Nested  Sets  has  been  widely 
popularized by Joe Celko. The main idea behind this encoding is 
representing nested sets as intervals of integers (Fig. 5.3).

4 High-end databases indeed have support for collection datatypes.
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Figure 5.3: Nested Sets as intervals of integers. The 
node B is encoded by the interval beginning with 2 
and ending with 7. 
Unlike our first naïve nested sets implementation, where we must 
have a set datatype in order to be able to check if one set encoding 
contains another encoding, Celko’s encoding no longer needs it. 

The schema for nested sets tree encoding:
table EmpHierarchy ( 
   left integer,
   right integer,
   ename varchar(2000),
   …
)

A typical  query checks  if  one  interval  is  covered  by the  other 
interval, which, as we know already, can be easily expressed via 
standard SQL. For example,
select node1.ename
from EmpHierarchy node1, EmpHierarchy node2
where node1.left between node2.left and node2.right
and node2.ename = ‘SMITH’

finds a chain of  SMITHs supervisors. This query is essentially the 
same  as  querying  the  chain  of  ancestors  in  the  section  on 
materialized  path  encoding.  This  raises  the  concern  about  this 
query’s  performance.  The  dynamic  SQL  trick,  which  we 
employed  for  materialized  path  encoding,  however,  no  longer 
works. There is no way to know the position of the node in the 
hierarchy by looking at the encoding of that node alone. 

Like  our  naïve  nested  sets,  intervals  of  integers  encoding  is 
volatile. Unlike naïve nested sets, inserting a new node involves a 
lot more work – roughly a half of the nodes must be recomputed.  

The crux of  the problem is that integers  aren’t  dense. There is 
always a limit onto a number of intervals that you can nest inside 
any given interval of integers. 

A
B
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Fortunately,  integers  have  nothing  to  do  with  interval  nesting. 
They excel for illustration purposes, but if we want non-volatile 
encoding, we have to move on to dense domains of numbers, like 
rational or real numbers. With this goal in mind, let’s study how 
to nest intervals of rational numbers. But first, we have to figure 
out how to divide an interval into smaller pieces.

Interval Halving
Consider  splitting  an  interval  with  rational  endpoints  into  two 
smaller intervals. Any point between the left and right endpoint 
might be good enough to the extent that we get two intervals. On 
the  other  hand,  if  we  choose  this  point  carelessly,  then  one 
interval might be much smaller than the other one. This might be a 
problem from implementation perspective, because small intervals 
impose much stricter requirements on arithmetic’s precision. For 
example, checking if a point 0.7453 belongs to the interval [0.3, 
0.9] is much easier than if it belongs to the interval [0.743, 0.748], 
since we need to go no further than 1 digit comparison in the first 
case versus 3 digits in the second. Therefore, we have to figure 
out the “most economical” way of finding the point between the 
two.

To repeat, given 2 rational numbers, what is the simplest number 
between them? Most people would probably choose the arithmetic 
average. For example, the simplest number between 0 and ½ is ¼, 
the simplest number between ¼ and ½ is 3/8 and so on. If we start 
with  the  point  0  and  1  and  continue  on  halving  the  intervals 
iteratively  then,  what  kind  of  numbers  would  be  produced? 
Clearly, those  whose denominator is  a  power of  2,  or simply, 
dyadic fractions. 
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Figure 5.4:  Halving interval  [0,1]  produces dyadic 
fractions that are naturally organized into a binary 
tree. 
Elementary school students might beg to differ. When questioned 
what the sum of ½ and ¼ is some suggest that the result is ½ + ¼ 
= (1+1)/(2+4) = 2/6 = 1/35. Ironically, their naïve approach is not 
without merit. The operation of adding fractions in this “wrong 
way” is called the  mediant. The mediant is the simplest number 
between the two fractions if we use smallness of denominator as a 
measure  of  simplicity.  Indeed,  the  average  of  ¼  and  ½  has 
denominator 8, while the mediant has denominator 3.

If  we start  with the  point  0  and 1 and continue on taking  the 
mediant  iteratively  then,  we  produce  another  famous  set  of 
numbers – Farey fractions. 

5 In American educational system adding rational numbers correctly is a skill developed 
somewhere between middle school and college.
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Figure  5.5:  Dividing  interval  [0,1]  by  taking  a 
mediant  produces  Farey  fractions  organized  into 
Stern-Brocot tree. 

The two systems of rational numbers that we just described are 
very closely related. In fact, there is a fascinating map between 
them,  but  the  details  are  perhaps  too  advanced  for  a  SQL 
programming book. An interested reader might Google Minkovski  
question mark function.

Although it is possible to develop nested interval tree encodings 
with both approaches,  in  this  book we’ll  study Farey fractions 
only. The main reason is the encoding size. For the tree of dyadic 
fractions denominators multiply by 2 at each next level. For Stern-
Brocot tree denominators grow slightly slower, approximately as 
powers of 1.618, where 1.618 is the golden ratio. In a word, Farey 
fractions  is  the  most  economical  way to  organize  a  system of 
nested intervals.

From Binary to N-ary Trees
The idea of interval splitting applies to binary trees. It could be 
easily extended to general n-ary trees by a well known one-to-one 
mapping of binary trees to n-ary trees.  Given an n-ary tree we 
transform  it  into  binary  tree  as  follows:  each  parent  node 
connected to the first child stays connected that way in the binary 
tree;ach next child is detached from its parent and is reconnected 
to  its  older  sibling.  Therefore,  the  second  sibling  has  the  first 
sibling as a parent in the binary tree; the third is connected to the 
second, and so on. The resulting tree is obviously binary, since 
each node has exactly two connections: 
1. The left child as a former first child in the n-ary tree.
2. The right child as a former younger sibling in the n-ary tree. 
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Figure 5.6: Mapping n-ary into binary tree could be 
viewed as a reorganization of edges between the 
tree nodes.  A link between a parent and its  first 
child  remains  unchanged,  while  a  link  from  a 
younger child is transferred to the older sibling.
Let’s transform the binary tree in fig. 5.5 into an n-ary tree. The 
root node has only one child. Therefore, it is convenient to agree 
that the root node of the binary tree in fig. 5.5 is 1/1 rather than ½. 
Then, node ½ is the first child, 2/3 is the second child, and so on. 
The first child of ½ is 1/3, the second child is 2/5, etc (Fig. 5.7).
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Figure  5.7:  Stern-Brocot  binary  tree  reorganized 
into n-ary tree. 
Let’s wrap these vague ideas into more rigorous form. In the next 
section we’ll  see that,  Farey fractions are essentially  continued 
fractions, which would leads to a simple algebra of 2×2 matrices. 
Matrices  are  required,  because  matrix  multiplication  mimics 
materialized path concatenation.  Our development is  essentially 
translating  the  algebra  of  materialized  path  strings  into  matrix 
form.

Matrix Encoding
Firstly  a  quick  reminder  of  how  to  multiply  2×2  matrices  of 
integer numbers.

Figure 5.8:  Multiplying 2×2 matrices.  Each row in 
the  left  operand  is  matched  element  by  element 
against a column in the right operand.
Matrix  multiplication  obeys  the  same  rules  as  string 
concatenation. It is associative

(AB)C = A(BC)

and distributive
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AB + AC = A(B+C)

but not commutative
AB ≠ BA

Now,  any  materialized  path  is  a  concatenation  of  atomic 
materialized  paths.  For  example,  .1.3.2.5 can  be  viewed  as  .1 
linked to .3, then joined with .2, and finally connected to .5. Can 
we do the same thing with matrices? The trick is to define atomic 
matrices,  such that  multiplying them would produce the matrix 
encoding for the full path. 

Atomic  matrices  turned  out  to  be  quite  simple.  In  fact  every 
atomic  matrix  has  three  constant  entries:  0  in  the  lower  right 
corner, and 1 in the lower left, and -1 in the upper right. The upper 
left entry is the node’s sequence number in the chain of siblings 
incremented by 1. For example, .5 corresponds to the matrix









6 -1
1 0

Then, multiplying matrices corresponding to .1,  .3,  .2, and .5 we 
get

 =   .  .  . 







2 -1
1 0









4 -1
1 0









3 -1
1 0









6 -1
1 0









107 -19
62 -11

Although we didn’t seem to progress much so far, we can at least 
round up matrix tree encoding schema design
table MatrixTreeNodes (
   a11 integer,
   a12 integer,
   a21 integer,
   a22 integer
);

A lot  of  questions  might  emerge  in  the  reader’s  mind  at  this 
moment, and we will address all of them one by one. The most 
important  being:  how is  this  matrix  encoding related to  nested 
intervals?  Indeed,  all  these  matrix  manipulations  should  be 
evaluated from the querying perspective. In particular, how would 
we  query  a  node’s  descendants  and  ancestors?  An  even  more 
basic question: how do we find a node’s parent and immediate 
children?

Parent and Children Queries

In our example
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 =   .  .  . 







2 -1
1 0









4 -1
1 0









3 -1
1 0









6 -1
1 0









107 -19
62 -11

there are certain constraints that this node encoding obeys. The 
entries in the left column are positive, and the entries in the right 
column are negative. Also absolute values of  the entries  in the 
right  column  are  component-wise  smaller  than  left  column. 
Likewise, absolute values in the upper row are greater than in the 
lower row. These properties are obvious for atomic matrices, but 
what about arbitrary nodes? 

Consider an arbitrary node with encoding










a11 a12

a21 a22

Its n-th child encoding is calculated as a matrix product

 =   . 










a11 a12

a21 a22









 +  n 1 -1
1 0











 +  a11 ( ) +  n 1 a12 − a11

 +  a21 ( ) +  n 1 a22 − a21

Let us examine these expressions closely. First  we see that the 
parent left row entries are moved into the child right row with the 
sign changed. Let assume that our intuition about the entries in the 
left  row  being  positive  and  the  entries  in  the  right  row  being 
negative is correct in the case of the parent encoding. Then,  it 
must carry over to the child. By induction, it follows that any node 
will  obey  these  rules.  A  similar  line  of  reasoning  proves  our 
insight about absolute values.

The  second  very  important  constraint  that  matrix  encoding 
satisfies is

 =   −  a11 a22 a12 a21 1

A  reader  with  basic  linear  algebra  background  has  likely 
recognized  the  matrix  determinant here.  Determinants  obey a 
multiplication  law:  when  matrices  multiply,  their  determinants 
multiply as well. Therefore, the determinant of a node encoding 
matrix is a product of the atomic matrix determinants! Since all 
atomic matrices have determinant equal to 1, the determinant of 
any node encoding matrix must be 1. 

The  determinant  constraint  reduces  the  number  of  independent 
matrix  entries  to  three.  Given  any  three  matrix  elements,  the 
fourth  entry is  unambiguously calculated  from the  determinant 
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constraint  equation.  We  could  do  even  better  –  reducing  the 
number of independent elements to two.

Given the two elements  a11 and  a21, relabeled conventionally as  a 
and  -b,  plus  unknowns  a12 and  a22 relabeled  as  y and  x,  the 
determinant equation reads

 =   +  a x b y 1

This is  perhaps  the most celebrated equation in  the  elementary 
number  theory.  Its  integer  solutions  are  calculated  via  the 
extended  Euclidean algorithm.  Here is the algorithm illustrated 
on our familiar matrix encoding example









107 -19
62 -11

We solve the equation
 =   −  107 x 62 y 1

in a series of steps illustrated on fig 5.9.

Figure 5.9: Extended Euclidean algorithm applied to 
numbers 107 and 62. We find an integer 1 such that 
1*62 is no larger than 107, and then show that the 
largest common measure of 62 and 107 is the same 
as  largest  common measure of  62  and 107-1*62. 
Lather,  rinse,  repeat.  In  the  third  column  we 
accumulate x and y factors .
At the last algorithm iteration we arrive at the values x=11 and y=19 
that satisfy the equation. 

Is this the only solution? Certainly not. Consider
62⋅107 - 107⋅62 = 0

Add it to
11⋅107 - 19⋅62 = 0

We have 
(11+62)⋅107 – (19+107)⋅62 = 0

107-1*62

62 -1*45

45 -1*17

17 -1*11

11 –2*5

=

= 62

= (1*107-1*62)

= (2*62 -1*107)

= (3*107-5*62)

- 1*(1*107- 1*62)

- 2*(2*62 - 1*107)

- 1*(3*107- 5*62)

- 2*(7*62 - 4*107)

= 1*107- 1*62  = 45
= 2*62 - 1*107 = 17
= 3*107 -5*62  = 11
= 7*62 - 4*107 = 5
=11*107-19*62  = 1
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which implies another solution x=73,  y=126! Fortunately, we know 
that x (i.e. a22) and y (i.e. a12) have to be smaller than 62 (i.e. a21) and 
107 (i.e. a11), respectively. Therefore we can dismiss them.

The most important implication of our research in this section is 
that the combination of a11 with a21 is always unique. We can go as 
far as reducing the MatrixTreeNodes definition to these two attributes 
(and calculate the other two columns on the fly via the extended 
Euclidean algorithm), or leave the redundant attributes in the table 
and just declare the unique key. We choose the second alternative, 
which is justified by our next step. Knowing that  a12 and  a22 are 
always negative, we are going to store their absolute values. Then, 
as we have seen already, the child values a12 and a22 have to refer to 
some parent identified by a11 and a21. In other words, a child always 
refers to its parent explicitly via a foreign key constraint.

Therefore, let’s enhance our tree schema design 
table MatrixTreeNodes (
   a11 integer,
   a12 integer,
   a21 integer,
   a22 integer
);
alter table MatrixTreeNodes 
ADD CONSTRAINT uk_node UNIQUE (a11,a21)
ADD CONSTRAINT fk_adjacency FOREIGN KEY (a12,a22)
              REFERENCES MatrixTreeNodes (a11,a21);

Hierarchy design where a node refers to the parent name explicitly 
is called an adjacency tree model, and its scope is actually bigger 
than trees. The schema for adjacency model is the following
table AdjacentTreeNodes (
   id integer,
   parent_id integer
);
alter table AdjacentTreeNodes 
ADD CONSTRAINT uk_node UNIQUE (id)
ADD CONSTRAINT fk_adjacency FOREIGN KEY (parent_id)
              REFERENCES AdjacentTreeNodes (id);

Unlike matrix encoding, there is no theory on how to choose a set 
of  node  identifiers,  except  obvious  the  restrictions  that  the  id 
column is a unique identifier, and the parent_id always refers to the 
parent node. The general adjacency model is the main topic of the 
next chapter.  

There  is  one  subtle  distinction  between  matrix  and  adjacency 
encodings.  What  does  the  root  node refer  to?  In the  adjacency 
encoding the  root  node  parent_id has to  be  null,  as  there  is  no 
parent.  In  the  matrix  encoding  we  just  apply  the  extended 
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Euclidean algorithm and obtain the four numbers. The root node 
refers  to some nonexistent  parent!  What  if  we change the  root 
node matrix encoding









1 -1
1 0

into  








1 null
1 null

Technically, we can’t force nulls into the matrix entries – it would 
destroy all the algorithms that were developed so far. It is more 
reasonable  to  admit  that  the  formal  referential  constraint 
declaration for matrix encoding is invalid, and therefore, should 
be  retracted  from our  schema  design.  This  is  not  a  big  issue, 
however,  given  that  matrix  encoding  enjoys  a  lot  more 
sophisticated constraints than referential integrity.

Once again, we were able to establish direct links between parent 
and children because we negated the values of  a12 and  a22. From 
now on, we’ll refer to the generic matrix node encoding as











a11 − a12

a21 − a22

Now  that  we  have  informal  referential  integrity  constraint, 
querying parent and children nodes becomes obvious.  

Parent is NULL? 
In the adjacency model the root node refers to the 
NULL parent. Does it mean that we can’t answer the 
query “Find the root node’s parent”?  In the matrix 
model the root refers to the imaginary parent, and 
the query “Find the root node’s parent” returns the 
empty set as it supposed to.
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Find all the employees who report directly to Jones. 
select child.name 
from MatrixTreeNodes parent, MatrixTreeNodes child
where parent.name = ‘Jones’
and child.a11 = parent.a12 and child.a21 = parent.a22 
Who is Jones’ manager? 
select parent.name 
from MatrixTreeNodes parent, MatrixTreeNodes child
where child.name = ‘Jones’
and child.a11 = parent.a12 and child.a21 = parent.a22

Nested Intervals
Querying descendants has to be done via nested intervals. Given a 
matrix 











a11 − a12

a21 − a22

we calculate the interval boundaries as 

,
a11

a21

 −  a11 a12

 −  a21 a22

Which  of  these  two  numbers  is  the  interval  lower  bound  and 
which is the upper bound? Let’s compare them. Multiplying both 
numbers to the product of their denominators and simplifying the 
result, we would reduce the problem to answering if 

 <  0  −  a11 a22 a12 a21

Here is the determinant expression, again, which evaluates to 1. 
Hence, interval boundaries are ordered as

 <  
a11

a21

 −  a11 a12

 −  a21 a22

Next, how can we be sure those intervals are indeed nested? Let‘s 
compare an arbitrary node interval ends with that of its children. 
The nth child interval encoding is

 =   . 










a11 − a12

a21 − a22









 +  n 1 -1
1 0











 −  a11 ( ) +  n 1 a12 − a11

 −  a21 ( ) +  n 1 a22 − a21

Therefore, the child interval boundaries are

,
 −  a11 ( ) +  n 1 a12

 −  a21 ( ) +  n 1 a22

 −  a11 n a12

 −  a21 n a22

Note, that the second endpoint is the same expression as the first 
one, with n decremented by 1. Therefore, we have to check if
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, ≤  
a11

a21

 −  a11 n a12

 −  a21 n a22
 ≤  

 −  a11 n a12

 −  a21 n a22

 −  a11 a12

 −  a21 a22

for any n ≥ 1. Both inequalities reduce to
, ≤  0  −  a11 a22 a12 a21  ≤  0 n ( ) −  a11 a22 a12 a21

respectively.  This  proves  that  the  parent  node  interval  indeed 
contains its child intervals.

The second property of nested intervals – sibling node intervals 
being disjoint – can be proved in a similar fashion.

Descendants Query

Now that we have a nested intervals structure, we can move on to 
querying node’s descendants. As a first approximation, let’s take 
the descendants’ query in terms of nested sets as a template and 
rewrite it in terms of nested intervals
select descendant.*
from MatrixTreeNodes descendant, MatrixTreeNodes node
where descendant.a11/descendant.a21 between node.a11/node.a21 
                   and (node.a11-node.a12)/(node.a21-node.a22)
and node.name = …  -- predicate uniquely identifying a node 

Unfortunately, this query would produce a wrong result. None of 
the database vendors supports a rational  number datatype6.  The 
ratios  of  integers  would  be  silently  cast  into  floating  point 
numbers with accompanying errors due to lack of precision. We 
have to rewrite all  of the expressions with divisions within the 
scope of integer arithmetic 
select descendant.*
from MatrixTreeNodes descendant, MatrixTreeNodes node
where descendant.a11*node.a21 >= descendant.a21*node.a11
and   descendant.a11*node.a22 >= descendant.a21*node.a12
and node.name = …  -- predicate identifying a node uniquely 

When we discussed descendant query performance in the context 
of nested sets, we emphasized index range scanning as an efficient 
way to extract all the descendant nodes. This idea generalizes to 
nested intervals, although we have to index interval boundaries. 
Let’s enhance our tree encoding schema design with two function-
based indexes:
table MatrixTreeNodes (
   a11 integer,
   a12 integer,
   a21 integer,
   a22 integer
);

6 In fact, rational datatype is not even part of SQL standard.
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CREATE INDEX idx_left ON MatrixTreeNodes(a11/a21);
CREATE INDEX idx_right ON MatrixTreeNodes((a11-a12)/(a21-a22));

We have to rewrite the query in such a way that optimizer can 
leverage these indexes
select descendant.*
from MatrixTreeNodes descendant, MatrixTreeNodes node
where descendant.a11*node.a21 >= descendant.a21*node.a11
and   descendant.a11*node.a22 >= descendant.a21*node.a12
and   descendant.a11/descendant.a21 
      between node.a11/node.a21 – 0.0000001
      and (node.a11-node.a12)/(node.a21-node.a22) + 0.0000001
and node.name = …  -- predicate uniquely identifying a node 

The constant 0.0000001 is designed to compensate for floating point 
arithmetic rounding errors. It essentially is a minimal supported 
mantissa.  Please refer to your favorite database SQL manual in 
order to find out the exact value. This way an index range scan 
would capture all  the nodes in the interval and, possibly, some 
extra7.  Then, the (small) list  of nodes is filtered with the exact 
condition. 

Ancestor Criteria

Suppose we have two nodes: one encoded with matrix A, and the 
other encoded with  B. Node  A is an ancestor of  B if and only if 
there is a (directed) path from A to B. In matrix terms, there has to 
be a sequence of atomic matrices, so that after we multiply A to it, 
we obtain matrix B. By the matrix multiplication associativity law, 
we can combine all those atomic matrices into a single matrix  X. 
In other words, node  A is an ancestor of  B if there is a matrix  X 
such that

A X = B

If matrix A has inverse A-1 then, multiplying both sides to A-1 we get
X = A

-1
 B

The formula for the inverse of the 2×2 matrix is

 =  










a11 − a12

a21 − a22

-1










− a22 a12

− a21 a11

where we leveraged the knowledge that our matrices always have 
determinant 1. Therefore, given any nodes A and B we can always 
find matrix X that encodes the path between them. 

7 But not too many extra!
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This is absurd, as node B might not necessarily be a descendant of 
A!  Let’s  examine  the  phenomenon  more  closely.  As  usual,  an 
example might be handy. Consider the nodes A=1.7 and B=1.3.2.5 in 
matrix encoding

 =   . 







2 -1
1 0









8 -1
1 0









15 -2
8 -1

 =   .  .  . 







2 -1
1 0









4 -1
1 0









3 -1
1 0









6 -1
1 0









107 -19
62 -11

Then, A-1B evaluates to








17 -3
74 -13

This  is  not  a  valid  matrix  encoding,  however.  It  violates  the 
constraint that the entries in the upper row are greater than the 
ones in the lower row. 

Here is more detailed explanation why this is happening. Since 
matrix A is decomposed into a product of (atomic) matrices, why 
don’t we leverage the law of inverse of matrix product:

(P Q)
 -1

 = Q
-1
 P

-1

In our example

 =  





 . 








2 -1
1 0









8 -1
1 0

-1








8 -1
1 0

-1








2 -1
1 0

-1

Hence, A-1B expands into the following product of atomic matrices 
and their inverses









8 -1
1 0

-1








2 -1
1 0

-1








2 -1
1 0









4 -1
1 0









3 -1
1 0









6 -1
1 0

where








2 -1
1 0

-1








2 -1
1 0

collapses into the identity matrix. This is due to the fact that both 
A=.1.7 and B=.1.3.2.5 start with the same prefix  .1. Therefore, the 
above expression for A-1B simplifies to









8 -1
1 0

-1








4 -1
1 0









3 -1
1 0









6 -1
1 0

which can’t be further reduced. It is multiplication by an atomic 
matrix inverse that violates the constraint.
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In order to carry over this idea to SQL, we have to write  A-1B in 
generic form

 =   . 










− a22 a12

− a21 a11











b11 − b12

b21 − b22











 −  b21 a12 b11 a22  −  b12 a22 b22 a12

−  +  b11 a21 b21 a11 −  +  b22 a11 b12 a21

which  translates  to  the  descendants  query  from  the  previous 
section 
select B.*
from MatrixTreeNodes A, MatrixTreeNodes B
where B.a21*A.a12 - B.a11*A.a22 > -B.a11*A.a21 + B.a21*A.a11
and   B.a12*A.a22 - B.a22*A.a12 > -B.a22*A.a11 + B.a12*A.a21
and A.name = …  -- predicate identifying a node uniquely 

Admittedly,  this  query  is  slightly  more  complicated  than  the 
nested intervals version. The real contribution of this section is 
introducing inverse matrices, which we will leverage later when 
relocating subtrees.

Ancestors Query

Logically,  finding  all  the  ancestors  can  be  accomplished  by 
swapping the roles of the two join operands in the descendants 
query. Once again, such a query won’t be a good performer. In the 
section on materialized path encoding we split the problem into 
two parts: computing all the node encodings in the chain first, and 
extracting all the nodes by those keys from the database, second. 
As we have already seen a close tie between materialized path and 
matrix  encoding,  it  would  come  as  no  surprise  that  we  can 
perform the same trick with matrices.

Let’s look into the matrix encoding of parent and child nodes one 
more time:

 =   . 










a11 − a12

a21 − a22









 +  n 1 -1
1 0











 −  a11 ( ) +  n 1 a12 − a11

 −  a21 ( ) +  n 1 a22 − a21

As we have already seen, the child just inherited the entries a11 and 
a21 from its parent. Therefore, to calculate the left row entries of 
the parent, just take them from the right row of the child matrix. 
The right row elements are the remainders of the division of the 
parent left row by the right row. As an added bonus, we obtained 
a sibling order number n.
   
Let’s demonstrate it on a familiar example of child node 1.3.2.5 









107 -19
62 -11
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The modulo function calculates remainders
19-mod(107,19) = 7

11-mod(62,11) = 4

Let’s double-check the results
107 = (5+1)*19 - 7

62 = (5+1)*11- 4

Hence, the parent encoding








19 -7
11 -4

We continue this process and find the grandparent








7 -2
4 -1

and great grandparent 








2 -1
1 0

which happens to be the root – a matrix with a22 = 0. Now that we 
have a list of ancestor matrices, how would we extract them from 
database? One solution would be to build a dynamic query like 
this:
select *
from MatrixTreeNodes
where a11=19 and a12=7 and a21=11 and a22=4 
   or a11=7 and a12=2 and a21=4 and a22=1 
   or a11=2 and a12=1 and a21=1 and a22=0 

A better approach would be to store the ancestor encoding in a 
temporary Ancestors table, and use the generic query:
select n.*
from MatrixTreeNodes n, Ancestors a 
where n.a11=a.a11 and n.a12=a.a12 and n.a21=a.a21 and n.a22=a.a22

Some RDBMS engines  allow programming  table  functions,  so 
that the table of ancestor encodings can be produced as an output 
of such a function. Syntactically, the query would become
select n.*
from MatrixTreeNodes n, Table(Ancestors(49,9,38,7)) a 
where n.a11=a.a11 and n.a12=a.a12 and n.a21=a.a21 and n.a22=a.a22

Given the entries  a11=107,  a12=19,  a21=62, and  a22=11, the  Ancestors 
table  function  is  supposed  to  calculate  the  chain  of  ancestor 
encodings. 

Converting Matrix to Path
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In previous section we looked at the identity connecting the parent 
and child encoding

 =   . 










a11 − a12

a21 − a22









 +  n 1 -1
1 0











 −  a11 ( ) +  n 1 a12 − a11

 −  a21 ( ) +  n 1 a22 − a21

and mentioned that a sibling order number  n is  a  remainder of 
integer division floor((a11*(n+1)-a12)/a12). In our example, the node 
1.3.2.5 is the 5th children of the node 1.3.2:

floor(107/19) = 5

floor(62/11) = 5

Working all the way to the root we’ll find the other numbers in the 
path.

The path is generated in the order from leaf to root. Perhaps, it 
would be more convenient to generate it in the opposite order. The 
procedure is essentially the same, but applied to the transposed 
matrix.

Inserting Nodes

So far our attention was on queries. But how do we fill in the tree 
with nodes? The new node location is unambiguously defined by 
node’s  parent,  and  node’s  position  among  the  other  children. 
Normally, given a parent, one would like to attach a new node as 
the youngest child. Therefore, node’s insertion is accomplished in 
two steps:

1. Query all the immediate children and find the oldest child.
Select max(floor(a11/a12)) as N from MatrixTreeNodes
where a11 = :parent_a12
and a21 = :parent_a22

where  :parent_a12 and  :parent_a22 are the  host  variables  of  your 
parent node encoding.

2. Insert the node at the n-th position:
insert into MatrixTreeNodes (a11,a12,a21,a22) values
(:parent_a11*(:N+1) - :parent_a12,
 :parent_a11,
 :parent_a21*(:N+1) - :parent_a22,
 :parent_a21);

These two steps can be combined into a single  insert as select 
statement. 
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Relocating Tree Branches

This is the section where matrix algebra really shines. Consider a 
tree branch located at node encoded with matrix  A, and suppose 
we want to move it to the new location under node B. How would 
the encoding of some node C (which is located in the tree branch 
under A) change?

That is quite an easy task for materialized path encoding. First, 
find out the path from the node A to C. Then, append it to the node 
B. This idea transfers to matrices almost literally. The encoding of 
the node C is a product of it’s ancestor A and some other matrix

A X = C

Matrix  X corresponds  to  the  path  from  A to  C.  This  path  is 
appended to path B, hence is we multiply matrices and obtain the 
resulting encoding

B X 

The unknown matrix X is calculated via inverse matrix, so we get 
the final answer

B A
-1 

C

In  order  to  be  able  to  translate  it  into  SQL,  let’s  expand  the 
answer component-wise

 .  . 










b11 − b12

b21 − b22











− a22 a12

− a21 a11











c11 − c12

c21 − c22

 =  

 +  ( )−  +  b11 a22 b12 a21 c11 ( ) −  b11 a12 b12 a11 c21[ ,

−  −  ( )−  +  b11 a22 b12 a21 c12 ( ) −  b11 a12 b12 a11 c22 ]

 +  ( )−  +  b21 a22 b22 a21 c11 ( ) −  b21 a12 b22 a11 c21[ ,

−  −  ( )−  +  b21 a22 b22 a21 c12 ( ) −  b21 a12 b22 a11 c22 ]

which can be coded in SQL as
update MatrixTreeNodes c
set c.a11 = (:b12*:a21-:b11*:a22)*c.a11 
           +(:b11*:a12-:b12*:a11)*c.a21
    c.a12 = (:b12*:a21-:b11*:a22)*c.a12 
           +(:b11*:a12-:b12*:a11)*c.a22
    c.a21 = (:b22*:a21-:b21*:a22)*c.a11 
           +(:b21*:a12-:b22*:a11)*c.a21
    c.a22 = (:b22*:a21-:b21*:a22)*c.a12 
           +(:b21*:a12-:b22*:a11)*c.a22
where c.a11*:a21 >= c.a21*:a11  -- all the descendants of matrix 
and   c.a11*:a22 >= c.a21*:a12  -- [[:a11,:a12][:a21,:a22]]
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Ordering
So far we emphasized how to query the tree structure in various 
encodings.  The  presentation  layer  often  demands  an  ordered 
output.  The  difficulty  here  is  that  the  end  user  is  expected  to 
specify some ordering criteria at runtime, and the order might not 
conform to the order encoded in the tree structure. For example, 
consider  a  familiar  hierarchy  of  employees  with  nested  sets 
encoding

 ENAME  LEFT  RIGHT 
 KING  1  20  

     JONES  2  7 
         SCOTT  3  6 
             ADAMS  4  5 
         FORD  8  11 
             SMITH  9  10 
     BLAKE  12  19 
         ALLEN  13  14 
         WARD  15  16
         MARTIN  17  18 

The tree is effectively ordered by the  LEFT column. A user might 
ask to display it (locally) ordered by the employee names at each 
hierarchy level. It is easy to see that the (global) ordering criteria 
is essentially the path from the root to a node, which is made of 
concatenated names

 ENAME  PATH 
 KING  KING 

     BLAKE  KING.BLAKE 
         ALLEN  KING.BLAKE.ALLEN 
         MARTIN  KING.BLAKE.MARTIN  
         WARD  KING.BLAKE.WARD  
     JONES  KING.JONES 
         FORD  KING.JONES.FORD 
             SMITH  KING.JONES.FORD.SMITH
         SCOTT  KING.JONES.SCOTT
             ADAMS  KING.JONES.SCOTT.ADAMS

Unlike the materialized path, the path of concatenated names must 
be  generated  dynamically,  and  the  technical  problem  here  is 
aggregating the names into a path string.  Fortunately, we have 
learned the  LIST aggregate function in chapter 3.  Therefore,  we 
proceed by taking the familiar nested sets query, which returns a 
list of all node ancestors, and aggregating those lists into paths
SELECT ii.left 
       ,CONCAT_LIST(CAST( COLLECT('.'||i.ename) AS strings )) path 
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FROM   Employees i, Employees ii 
where ii.left between i.left and i.right 
group by ii.left;  

On a cautionary note, this particular implementation of the  LIST 
aggregate is agnostic of the order of the aggregation summands. 
The  reader  must  double  check  that  his  favorite  string 
concatenation method concatenates summands in the right order. 

Ordering by dynamic path seems to be a natural solution until we 
are  asked  to  order  by  numeric  criteria,  salary,  for  example. 
Numbers sorted as strings go in wrong order.  They have to be 
padded.  The  other  concern  is  negative  values.  All  these 
inconveniences  make  the  dynamic  path  solution  not  quite 
satisfactory.

An alternative solution is recreating hierarchy dynamically with 
the structure,  which is  conforming to the required ordering.  At 
first  thought, recreating hierarchy smells performance problems, 
but our rationale hinges upon a typical usage scenario. It must be 
the  GUI  that  wants  to  display  ordered  hierarchy,  and  GUI 
rendering  capabilities  impose common sense  limits  on  the  tree 
size. Even if GUI were able to display the whole tree, then an end 
user would be overwhelmed by the volume of information that he 
were presented “at once”. It is fair to assume that a reasonably 
designed GUI would display only a  local portion of a hierarchy, 
no matter how big the whole hierarchy might be. 

Therefore,  the issue of hierarchy ordering should be considered 
within  the  scope  of  application  design.  An  application 
programmer  designs  a  method  of  hierarchy  navigation  and 
display, which guarantees that the GUI displays only a small part 
of  the  hierarchy. A familiar example  is  an organizational  chart 
where no more than two levels of hierarchy is displayed at each 
tree node: employee subordinates, and his supervisor.  Ordering 
such a puny tree is a laughably easy exercise for a reader who has 
advanced thus far in the book. 

An alternative design is a dynamic tree widget where each node 
exists  in  one  of  the  two  states:  expanded  or  collapsed.  The 
Windows file manager utility is a typical example. In principle, a 
directory tree could be expanded fully, but it is unreasonable to 
expect that there is a user who is up to the challenge of manually 
expanding a hierarchy of any significant size to the full depth.   
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Exotic Labeling Schemas
Tree encoding area is flourishing with various methods. It is so 
easy to invent yet another tree labeling schema! This contrasts to 
general graphs, which appear to defy encoding ideas. This section 
reviews others, arguably, less practical tree encoding methods.

Dietz Encoding
One natural way to label a tree is pre-order traversal (fig 5.10).

Figure 5.10: Pre-order traversal. 
It is natural because the tree nodes are indexed in the depth-first 
order,  and tree node records are is depth-first order in a nearly 
ubiquitous tree display with levels laid out horizontally

 Employee Name  Preorder# 
 KING  1 

     JONES  2 
         SCOTT  3 
             ADAMS  4 
         FORD  5 
             SMITH  6 
     BLAKE  7 
         ALLEN  8 
         WARD  9 
         MARTIN  10 

Post-order traversal is a little bit less intuitive way of navigating a 
tree.  The nodes are visited in the same order, but node’s index 
number  assignment  is  postponed  until  all  node’s  children  are 
indexed.

1
2

543
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Figure 5.11: Post-order traversal. 

Dietz  tree  encoding  assigns  a  pair  of  indexes  (preorder#, 
postorder#) to each node.

It  is  immediately  evident  that  Dietz  tree  encoding  is  volatile. 
Inserting a new node disrupts existing encodings, both pre-order 
and post-order. 

Querying  a  Dietz  encoded  tree  is  based  upon  the  following 
ancestor  criterion:  node  x is  an  ancestor  of  y if  and  only  if 
x.preorder#  ≤ y.preorder# and  y.postorder#  ≤ x.postorder#.  This 
criterion  appears  to  be  identical  to  that  of  nested  intervals, 
although unlike nested intervals neither preorder# < postorder#, nor 
preorder# < postorder# is universally true for all the nodes.

Let's  look  at  two-dimensional  picture  of  Dietz  encoding.  Let's 
assume that  preorder# is the horizontal axis, and  postorder# is the 
vertical one (fig 5.12). 

Figure  5.12:  Two  dimensional  view  of  Dietz 
encoding. A root node preorder#=1, postorder#=5 

Preorder#

5
3

421

Postorder#
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has  all  it’s  descendants  within  the  cone 
preorder#>1, postorder#<5.
Each node x has its descendant nodes y bounded within the two-
dimensional  cone  defined  by the  two  inequalities  x.preorder#  ≤ 
y.preorder# and y.postorder# ≤ x.postorder#. For nested intervals we 
would  additionally have  preorder# < postorder# or,  in  geometric 
terms have all the nodes above the diagonal preorder# = postorder#. 
If we move all the tree nodes above the diagonal somehow, then 
we’d succeed transforming Dietz encoding into nested intervals. 
Linear mapping

left = total#nodes - postorder# +1 

right = 2 ⋅ total#nodes - preorder#

achieves that goal (fig 5.13).

Figure 5.13: Dietz encoding linearly transformed to 
have all the tree nodes above the main diagonal – 
to nested interval encoding.

Pre-order – Depth Encoding
Yet another way to label the tree is storing combination of pre-
order index number and level. Let’s glance over the basic queries, 
though. 

1.  To find out node’s parent,  select all  the nodes on the upper 
level and, then, filter out all the nodes beneath, and choose the one 
with maximum preorder# among the rest. In our familiar example

 Employee Name  Preorder# 
 KING  1 

Left

Right
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     JONES  2 
         SCOTT  3 
             ADAMS  4 
         FORD  5 
             SMITH  6 
     BLAKE  7 
         ALLEN  8 
         WARD  9 
         MARTIN  10 

we search for  Smith‘s parent among the upper level nodes:  Scott, 
Ford, Allen, Ward and Martin. We reject Allen, Ward and Martin as they 
all have  preorder# greater than  Smith. Between  Scott and  Ford the 
latter has greater preorder#. 

2. To find out all the descendants we find the next node on the 
same level,  and  the  next  node  on  the  parent  level,  choose  the 
closer of the two and, then, select all the nodes between the given 
node and the chosen one.

For  Scott we pick up  Ford and  Blake, and then select every node 
between Scott and Ford (exclusively).

3. Finding all of a node's children is just filtering out of case #2 
the nodes with the proper level.

4. Finding a path to the root is just selecting all the predecessor 
nodes, grouping them by level, and extracting maximum sequence 
numbers per each group.

This  is,  again,  is  a  volatile  encoding,  which  kills  our  further 
interest in detailed exploration. 

Reversed Nesting
Let’s revise the nested sets example in fig. 5.2. This time instead 
of a parent set containing its children sets, we demand parent set 
to be contained in its children (fig 5.14). 
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Figure 5.14:  Nested sets structure for the tree in 
fig.  5.2a  with  set  containment  reversed.  Now,  a 
child set is required to contain its parent. 
This  variation  of  Nested  Sets  encoding  is  non-volatile.  Once 
again,  there  is  no  direct  support  of  a  set  datatype  on  most 
platforms, so we have to find a workaround. Armed with Boolean 
algebra we represent each set as a Boolean vector, the latter can 
be  stored  as  plain  strings.  For  example,  {0,1,4,6} becomes 
‘1100101’. 

In  general,  set  containment  doesn’t  correspond to  any standard 
operation on strings. Sets of tree nodes are special, however (fig 
5.15).

Figure 5.15: A different view of the reverse nested 
sets  structure  for  the  tree  in  fig.  5.14.  A  set  is 
indistinguishable from path to the root. 
Set elements correspond to tree nodes, and each set is associated 
with a path from the root to a node. Hence, set containment for 
reverse nested sets  is  the same as the substring operation.  The 

1.1
1.2

1.1.1 1.2.1

1

C={1,2,3} B={1,2}

E={1,5}

A={1} D={1,2,4}
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methods  for  querying  materialized  path  encoded  trees  that  we 
studied earlier must work for reverse nested sets as well. 

Roji Thomas suggested yet another tree encoding, which is closely 
related to reverse nested sets. In his method each node is labeled 
in  two  steps.  First,  each  node  is  designated  a  unique  prime 
number. Then, each node is encoded with a number a product of 
the primes on the path from the node to the root. The node  A is 
ancestor of the node B whenever encoding of A divides B.

By the fundamental theorem of arithmetic, every integer has a 
unique prime factorization:

N = 2α
1⋅3α

2⋅5α
3⋅…⋅pk

α
k 

It is immediate that the vector of prime orders (α1, α2, α3,…, αk) in 
Roji  Thomas  case  is  Boolean,  and  his  encoding  is  essentially 
reverse  nested  sets.  Without  establishing  this  connection  our 
investigation would not be complete. 

When studying any encoding scheme, it is natural to start with the 
expressive  power,  verifying  that  any hierarchical  query can  be 
expressed  in  terms  of  new  encoding.  The  second  concern  is 
efficiency, with emphasis on access path via index. It might be not 
obvious how to index tree nodes in Roji Thomas’s encoding, and 
it is the connection to reverse nested sets that solves the problem.  

Ordered Partitions
Given a positive integer N, in how many ways it can be expressed 
as a sum of smaller integers? Assume the order of the summands 
is important. Although this problem seems to be too distant from 
database  practice,  it  nevertheless leads  to  yet another  encoding 
method. 

First  of  all,  ordered integer  partition is  essentially materialized 
path.  Let’s  enumerate  all  possible  partitions  by arranging them 
into the following table

 Encodin
g

 Partition  N 

 1  1  1 
 2  1+1  2 
 3  2  2 
 4  1+1+1  3 
 5  1+2  3 
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 6  2+1  3 
 7  3  3 
 8  1+1+1+1  4 
 9  1+1+2  4 
 10  1+2+1  4 
 11  1+3  4 
 12  2+1+1  4 
 13  2+2  4 
 14  3+1  4 
 15  4  4 
 16  1+1+1+1

+1 
 5

This enumeration is generated recursively. All the partitions of N+1 
are generated from the partitions of N in either way:

 putting an extra component with 1 in front of all of the other 
components of N, or

 incrementing the first component of each partition of N by 1.
Then,  it  follows that partitions encoded with the even numbers 
have 1 as the last component. Indeed, as long as we have evenly 
encoded partitions of  N to end up with 1, this property is carried 
over to    the partitions of N+1. Since we associate partitions with 
materialized paths, this means the oldest child encoding is twice 
that of the parent! 

For odd encodings, let’s decrement them by 1, first. This would 
produce an even encoding – the case that we have studied already. 
Compared  to  the  former  odd encoded partition,  the  latter  even 
encoded partition has an extra component – the trailing 1. Both are 
partitions of the same number  N, however. This can be achieved 
only if the last component of the odd encoding is the sum of the 
last  component  and  the  last  but  one  component  of  the  even 
encoding. For example, the partition encoded as  11, i.e.  1+3, has 
the  last  component  3 to  be  represented  as  2+1 in  the  partition 
number  10, i.e.  1+2+1. Then, by halving the even encoding, we’ll 
get the encoding of the younger sibling (relative to the original 
odd encoded node)!

Although  these  discoveries  allow defining  an  ancestor  relation 
which could serve as a basis for hierarchical queries, we must not 
forget  about  performance.  It  is  unclear  if  the  integer  partition 
based  encoding  schema  admits  an  efficient  querying  node’s 
descendants.  Once  again,  our  benchmark  is  nested  intervals 
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encoding,  where all  the descendants  can be accessed via index 
range  scan.  It  turns  out  that  integer  partition  encoding  is  very 
closely related to nested intervals encoding with dyadic rational 
numbers; in fact, there is a transparent mapping between them. I 
won’t pursue this venue here any longer, however, and refer an 
interested reader to a series of my papers published by dbazine.com. 
Once  more,  from practical  perspective  Farey fractions  provide 
more  economical  opportunity  to  organize  a  system  of  nested 
intervals. 

Case Study: Homegrown C function 
call profiler

A  profiler  is  a  common  tool  for  performance  analysis.  It 
determines how long certain parts of the program take to execute, 
how often they are executed, and generates the tree (or graph) of 
function calls. Typically this information is used to identify the 
portions of the program that take the longest to complete. Then, 
the  time-consuming  parts  are  expected  to  be  optimized  to  run 
faster. 

If the reader begins to suspect that there are plenty of tools doing 
the job, then (s)he’s absolutely right. Those tools, however, are 
just  programs.  They  build  canned  reports.  We’ll  approach  the 
problem from a database-centric angle. Let’s place the profiling 
data into the database, and then we can query it any way we like!

First, we need to gather the data. Linux/Unix pstack is a primitive 
utility that does the job. We can query the calls stack repeatedly 
with a shell script like this
integer i=0
while ((i <= 999));
do 
  pstack -F 25672 | tee -a pstack.trc;
  (( i = i + 1));
done

where the magic number 25672 is the process number to attach to.

The output is streamed into a file with the content like this:
25672: oracleEMR920U3 (DESCRIPTION=(LOCAL=YES)
(ADDRESS=(PROTOCOL=beq)))
 009d5930 appdrv   (ffbe82d8, 180000, ffbe82d8, feb5e794, 0, ffbe8351)
 009fd85c kkofmx   (0, 0, 0, 0, fe7bebb4, 2a38a43e) + 624
 009f834c kkonxc   (fe7bebb4, fe4b3124, …) + 8c
 009fc65c kkotap   (200000, 0, 0, 0, 1, 4000) + 1444
 009f1154 kkojnp   (0, 0, 0, 0, 108, 0) + 14dc
 009ef9e8 kkocnp   (fe7bebb4, 1, 0, 0, 1f, 7c) + f0
…
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 008f4b5c opidrv   (3c, 4, ffbef504, 2f6c6f67, 0, 2f) + 1ec
 001d666c sou2o    (ffbef514, 3c, 4, ffbef504, 0, 0) + 10
 001cf59c main     (2, ffbef5dc, ffbef5e8, 30d2000, 0, 0) + ec
 001cf488 _start   (0, 0, 0, 0, 0, 0) + 108
25672: oracleEMR920U3 (DESCRIPTION=(LOCAL=YES)
(ADDRESS=(PROTOCOL=beq)))
 00a1c6a4 kkorbp   (ffbe8e3c, 0, ffffffff, 0, 0, ffbe8e61) + 808
 00a1f230 kkobrfak (ffbe8e3c, ffbe8e60, fe39a42c, 0, 0, 1) + 8c
 00a1d92c kkofbp   (2a3bef38, 0, 2a3bef38, 0, 0, 1) + 584
 00a22ddc kkobmp   (10, fe4b39e4, 23, fe4df610, 0, fe4b3ac4) + bc 
…
 008f4b5c opidrv   (3c, 4, ffbef504, 2f6c6f67, 0, 2f) + 1ec
 001d666c sou2o    (ffbef514, 3c, 4, ffbef504, 0, 0) + 10
 001cf59c main     (2, ffbef5dc, ffbef5e8, 30d2000, 0, 0) + ec
 001cf488 _start   (0, 0, 0, 0, 0, 0) + 108
25672: oracleEMR920U3 (DESCRIPTION=(LOCAL=YES)
(ADDRESS=(PROTOCOL=beq)))
 00a1f218 kkobrf   (ffbe8e3c, ffbe8e60, 0, 0, 0, 0) + 74
 00a1d690 kkofbp   (2a3bef38, 0, 2a3bef38, 0, 0, 1) + 2e8
 00a22ddc kkobmp   (10, fe4b39e4, 23, fe4ff610, 0, fe4b3ac4) + bc
 009fc678 kkotap   (200000, 0, 0, 0, 1, 4000) + 1460
…

The detailed file structure is not important. What is essential for 
our analysis is the sequence of function calls (emphasized in bold) 
within  each  section  (demarcated  with  italic  delimiters). 
Specifically, we would like to move the data to the database with 
the following schema: 
table function_sequences (
    stack_id integer,       -- section
    id       integer,       -- sequence #
    func     varchar2(100)  -- function name
);

Our sample data snippet is now a part of the database table 
select * from function_sequences

 STACK_ID  ID  FUNC 
 1  1  appdrv 
 1  2  kkofmx 
 1  3  kkonxc 
 1  4  kkotap 
 1  5  kkojnp 
 1  6  kkocnp 
 …  …  …
 1  28  opidrv 
 1  29  sou2o 
 1  30  main 
 1  31  _start 
 2  1  kkorbp 
 2  2  kkobrfak 
 2  3  kkofbp 
 2  4  kkobmp 
 …  …  … 
 …  …  … 
 2  29  opidrv 
 2  30  sou2o 
 2  31  main 
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 2  32  _start 
 3  1  kkobrfak 
 3  2  kkofbp 
 3  3  kkobmp 
 3  4  kkotap 
 …  …  … 

The  data  mover  implementation  is  rather  boring.  We  read  the 
input file  line by line. If  the line starts with the magic number 
25672,  then  we  are  parsing  a  section  delimiter  string  so  we 
increment  the  stack_id counter,  and  initialize  the  id counter. 
Otherwise,  we  read  the  function  name  and  increment  the  id 
counter. 

It  was easy to implement the function  ids increasing with each 
line  scanned,  but  their  order  is  inconsistent  with  stack  slot 
numbering. It is convenient to relabel the functions, so that the 
root  function  _start is  always  labeled  with  id = 1.  The  new 
view/table name –  Stacks – reflects the fact that our data is now 
conventionally aligned with the stack data structure: 
create table Stacks as 
select s.stack_id id, height - s.id + 1 pos, func 
   from function_sequences s, (
   select stack_id, max(id) height from function_sequences
   group by stack_id
) ss
where s.stack_id = ss.stack_id
;

We have finally arrived at an interesting aspect of the problem, 
the  reporting.  How  do  we  combine  all  these  stacks  into  a 
meaningful  call  graph?  In particular,  what  defines  the  function 
location  in  the  call  graph?  Having  learned  so  much  about 
materialized path encoding already, we’ll find the answer hardly 
surprising. It is a path assembled from of all the names on the call 
stack that we are after.

Technically, functions are concatenated with the  list8 aggregate 
function
select id, list('.'||func) 
           over (partition by id order by pos) path, 
       pos, func
from stacks;

 ID  PATH  FUNC 
 1  ._start  _start 
 1  ._start.main  main 
 1  ._start.main.sou2o  sou2o 

8 Reminder: the list string concatenation function was defined in the section dedicated to 
user-defined aggregates of chapter 3.  
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 1  ._start.main.sou2o.opidrv  opidrv 
 1  …  kglobld 
 1  ._start.main.sou2o.opidrv. … .kkoqbc.kkooqb.kkocnp  kkocnp 
 1  ._start.main.sou2o.opidrv. … 

.kkoqbc.kkooqb.kkocnp.kkojnp 
 kkojnp 

 1  ._start.main.sou2o.opidrv. … 
.kkoqbc.kkooqb.kkocnp.kkojnp.kkotap 

 kkotap 

 1  ._start.main.sou2o.opidrv. … 
.kkoqbc.kkooqb.kkocnp.kkojnp.kkotap.kkonxc 

 kkonxc 

 1  ._start.main.sou2o.opidrv. … 
.kkoqbc.kkooqb.kkocnp.kkojnp.kkotap.kkonxc.kkofmx 

 kkofmx 

 1  ._start.main.sou2o.opidrv. … 
.kkoqbc.kkooqb.kkocnp.kkojnp.kkotap.kkonxc.kkofmx
.appdrv 

 appdrv 

 2  ._start  _start 
 2  ._start.main  main 
 2  ._start.main.sou2o  sou2o 
 2  ._start.main.sou2o.opidrv  opidrv 
 2  …  opiodr 
Now that we have a materialized path, it can be used to group the 
stack tree nodes  with identical  paths  together,  and/or  order  the 
nodes to get a nice indented tree layout
select func, pos-1 depth, count(1) from (
  select id, list('.'||func) 
             over (partition by id order by pos) path, pos, func
  from 
  stacks
) group by path, pos, func
order by path;

 
 FUNC  COUNT(1) 

 _start  632 
     main  632 
         sou2o  632 
             opidrv  632 
                 opiodr  632 
                     opiino  632 
                         opitsk  632 
                             opikndf2  79 
                                 nioqrc  79 
                                     nsdo  78 
                                         nsrdr  78 
                                             nsprecv  78 
                                                 sntpread  78 
                                                     read  78 
                                     nsdosend  1 
                                         nsdo  1 
                                             nsdofls  1 
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                                                 nspsend  1 
                                                     _write  1 
                             ttcpip  553 
                                 opiodr  553 
                                     kpoal8  553 
                                         kpooprx  551 

 … 

The count aggregate is proportional to the time the execution has 
spent on this particular stack tree node.  From there you would 
typically search for hotspot nodes, where a significant part of the 
execution time is spent. 

Summary
 Nested Sets encoding is volatile, and not efficient for finding 

the chain of node’s ancestors.

 The Stern-Brokot tree provides the most economical way to 
split intervals. This idea leads to matrix encoding.

 Matrix encoding combines the two models: adjacency relations 
and nested intervals. It is an especially appealing alternative to 
materialized path encoding.

Exercises
1. Prove  that  in  matrix  encoding  sibling  node  intervals  are 

disjoint.

2. It is very tempting to write the ancestors query like this
select *
from MatrixTreeNodes
where a11 IN (19,7,2)

and a12 IN (7,2,1)
  and a21 IN (…,…,…)
  and a22 IN (…,…,…)

Explain why this query is flawed.

3. Implement the Ancestors table function in an RDBMS of your 
choice.

4. Adapt  the  descendants  query  to  return  the  list  of  node’s 
immediate children, that is  
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Select all the node’s descendants, which are on the next level. 

Compare  it  to  the  query that  leverages  informal  referential 
integrity constraint.  

5. Combine the two matrix encoding node insertion steps into a 
single insert as select SQL statement.

6. Explore matrix encoding with atomic matrices of a kind









n 1
1 0

7. The atomic matrices from exercise 8 are  symmetric -- they 
remain  unchanged  under  transposition.  Prove  that  matrix 
transposition of an arbitrary node encoding corresponds to its 
inversed materialized path. (Then, symmetric matrix encoding 
corresponds to palindrome path!) Hint:  matrix transposition 
law

(A B)
T
 = B

T
 A

T

8. Explore matrix encoding with atomic matrices of a kind









 +  n 1 i
i 0

9. Prove  that  linear  transformation  of  Dietz  encoding  indeed 
meets all the nested interval constraints.

10. Consider the chain of ancestors of the node A, and the chain of 
ancestors of the node B. Among their common ancestors there 
exists  the  oldest  one,  which  is  called  the  nearest  common 
ancestor.  Write the nearest common ancestor query in matrix 
tree encoding.   
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