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Abstract. In this paper, we examine the resistance of the popular hash
function SHA-1 and its predecessor SHA-0 against dedicated preimage
attacks. In order to assess the security margin of these hash functions
against these attacks, two new cryptanalytic techniques are developed:

— Reversing the inversion problem: the idea is to start with an
impossible expanded message that would lead to the required di-
gest, and then to correct this message until it becomes valid without
destroying the preimage property.

— P3graphs: an algorithm based on the theory of random graphs that
allows the conversion of preimage attacks on the compression func-
tion to attacks on the hash function with less effort than traditional
meet-in-the-middle approaches.

Combining these techniques, we obtain preimage-style shortcuts attacks
for up to 45 steps of SHA-1, and up to 50 steps of SHA-0 (out of 80).
Keywords: hash function, cryptanalysis, preimages, SHA-0, SHA-1, di-
rected random graph

1 Introduction

Until recently, most of the cryptanalytic research on popular dedicated hash
functions has focused on collisions resistance, as can be seen from the successful
attempts to violate the collision resistance property of MD4 [10], MD5 [32, 34],
SHA-0 [6] and SHA-1 [13,21, 33] using the basic ideas of differential cryptanaly-
sis [2]. The community developed a wealth of fairly sophisticated tools that aid
this type of analysis, including manual [33] and automated [7,8,20] methods to
search and evaluate characteristics optimized for differential cryptanalysis of the
used building blocks.

This wealth of results stands in stark contrast to what is known about the
preimage and second preimage resistance of these hash functions. This is espe-
cially unsatisfying since most applications of hash functions actually rely more
on preimage and second preimage resistance than on collision resistance.
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Some of the main features of our results: All currently known generic
preimage attacks require either impractically long first preimages [15], a first
preimage lying in a very small subset of the set of all possible preimages [35], or
a target digest constructed in a very special way [14].

In this work, we study the resistance of SHA-0 and SHA-1 against dedi-
cated cryptanalytic attacks in settings where only relatively short preimages are
allowed and a first preimage might not be available. An example of a very com-
mon use case of hash functions that relies on the resistance against these kind
of attacks: hashed passwords. Especially SHA-1 is ubiquitously used, and will
continue to be recommended by NIST even after 2010 outside the application of
digital signatures [24], e.g., as RNG or KDF.

We exploit weak diffusion properties in the step transformation and in the
message expansion to divide the effort to find a preimage, and consider only
one or a small number of bits at a given time. In particular we present two new
cryptanalytic tools. Firstly a compression function attack by means of correcting
invalid messages, described in Sect. 3. Secondly, an algorithm based on the theory
of random graphs that allows an efficient conversion of preimage attacks on the
compression function to attacks on the hash function is presented in Sect. 4.

Later, in Sect. 5 we will discuss the results of combining these methods. This
results in cryptanalytic shortcuts attacks for up to 50 step of SHA-0 (out of 80)
and 45 steps of SHA-1. As a proof-of-concept we give a preimage for the 33-step
SHA-0 compression function and also a second preimage of an ASCII text under
the SHA-0 hash function reduced to 31 steps in Appendix B.

2 The SHA Family

In this paper, we will focus on the hash function SHA-1 and its predecessor
SHA-0. The SHA-1 algorithm, designed by the US National Security Agency
(NSA) and adopted as a standard in 1995, is widely used, and is representative
for a large class of hash functions which started with MD4 and includes most
algorithms in use today. In this section, we only briefly review a few features of
the SHA design which are important for the techniques presented in this paper.
For a complete description we refer to the specifications [25].

SHA-0 and SHA-1 consist of the iterative application of a compression func-
tion (denoted by f in Fig. 1), which transforms a 160-bit chaining variable h;_;
into hj, based on a 512-bit message block m;. At the core of the compression
function lies a block cipher g which is used in Davies-Meyer mode (see Fig. 2).
The block cipher itself consists of two parts: a message expansion and a state
update transformation.

The purpose of the message expansion is to expand a single 512-bit input
message block into eighty 32-bit words Wy, ..., Wrg. This is done by splitting the
message block into sixteen 32-bit words My, ..., M15, which are then expanded
linearly according to the following recursive rule:

W — M; for 0 <i < 16,
L (Wiig @Wi_s ®Wi_14®W;_16) < s for 16 < i < 80.
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The only difference between SHA-0 and SHA-1 lies in the rotation value s, which
is 0 for SHA-0, and 1 for SHA-1.

The state update transformation takes as input a 160-bit chaining variable
hj—1 which is used to initialize five 32-bit registers A, B, ..., E. These registers,
referred to as state variables, are then iteratively updated in 80 steps, one of
which is shown in Fig. 3. Note that the state update transformation can also be
described recursively in terms of A; only: after introducing A_; = By, A_5 =
Co<x 2, A 3=Dy 2, and A_4, = Ey & 2, we can write:

Ai-‘,—l = (Al <K 5) + W; + f(Ai_l, A o>2 A, 3> 2) + (Ai_4 > 2) + K;.

Because of this property, we will only consider the state variable A; in the
remainder of this paper.

3 Inverting the Compression Function

Before devising (second-) preimage attacks against the complete SHA function,
we first focus on its compression function, and develop inverting methods which
will be used as building blocks afterwards.

3.1 Possible Approaches

The recent successes in constructing collisions in SHA-0 and SHA-1 raise the
natural question whether the differential techniques developed for collision at-
tacks could also be used for constructing preimages. The question is especially
pertinent in the case of second preimages, which are in fact just special types of
collisions.
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A first straightforward approach would consist in reusing the differential
characteristics used in collision attacks by applying the corresponding message
difference to the given message. If the characteristic is followed, then this will
yield a second preimage. While this approach was applied to MD4 by Yu et
al. [35], and to SHA-1 reduced to 53 steps by Rechberger and Rijmen [29, 30], it
has some serious limitations when trying to find second preimages of reasonably
short messages. The main problem is that, since the starting message is already
fixed, the probability of the characteristic directly translates into the success
probability of the attack (instead of determining the number of trials, as in
collision attacks). This probability is further reduced by the fact that we lose the
possibility to influence the difference propagation by fixing bits of the message
to special values. In the case of MD4 and 53-step SHA-1, this results in attacks
which only succeed with a probability of 275% and 271515 respectively.

A second approach, which was recently proposed by Leurent in [17], relies
on the existence of special messages which can simultaneously be combined with
a large number of different characteristics, resulting in a large set of related
messages. The idea is to compute the hash value of such a special message, and
then apply the appropriate differences in order to steer this value towards the
target value. Similar strategies have previously been used in practical second
preimage attacks on SMASH by Lamberger et al. [16], and more recently in
preimage attacks on GOST by Mendel et al. [18,19]. In the case of MD4, this
approach does not require a first preimage to start with, and results in a preimage
attack against full MD4 with a complexity of 2100,

It is not clear, however, how these ideas could efficiently be applied to hash
functions such as SHA-0 or SHA-1, which, while still being vulnerable, show
much more resistance to differential cryptanalysis than MD4. In the next sec-
tions, we will therefore study a completely different approach, which, as will be
seen, has little in common with the techniques used in collision attacks.

3.2 Turning the Function Around

The problem we are trying to solve in this section is the following: given a 160-bit
target value hi, and a 160-bit chaining input hg, find a 512-bit message input
mo such that f(hg,mo) = hi, or equivalently that g(hg,mg) = h1 — hg. Since
the size of the message is much larger than the size of the output, we expect this
equation to have a very large number of solutions. The difficulty in determining
the 512 unknown input bits, however, lies in the fact that each of the 160 bit-
conditions imposed at the output, depends in a complicated way on all 512 input
bits.

The main observation on which the inversion method proposed in this paper is
based, is that we can obtain a larger, but considerably less interconnected system
of equations by expressing the problem in terms of internal state variables, rather
than in terms of message words. That is, instead of trying to tweak a message in
the hope to be able to control its effect on the output after being expanded and
fed through several iterations of the state update transformation, we will start
from state variables which already produce the correct output, and modify them
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Fig. 4. Two equivalent descriptions of the inversion problem for a compression function
reduced to R rounds

in such a way that the expanded message words, which can easily be derived
from them, satisfy the linear recursion of the message expansion.

The idea is illustrated in Fig. 4. Instead of considering the function which
maps My ... Mis to Az ... Ago as in Fig. 4(a), we will first fix Azq ... Ago to the
target value determined by hy — hg, and then analyze the function in Fig. 4(b)
which maps Ay ... Ars to error words Ey ... Egq, where

E,=W,&dWipo @ Wy s ® Wit13 D (Wi+16 > S), and
Wi=Ai1 — (A K5) = f(Aim1, Ai 2> 2,4 33> 2) — (Ais > 2) - K;.

Clearly, finding an input which maps to hy — ho in Fig. 4(a) is equivalent to the
problem of finding an input which maps to zero in Fig. 4(b).

The potential advantages of this alternative approach are clearly seen when
analyzing how flipping a single bit in the input affects the output in both cases.
In the first case, illustrated in Fig. 5(a), a single flip in the message quickly
propagates through both the expanded message and the state, resulting in a
completely uncontrollable pattern of changes at the output. In the second case,
however, a bit-flip in the state propagates to the output in a very predictable
way, as shown in Fig. 5(b). A change in the state affects at most 6 consecutive
expanded messages words, and at most 22 words of the output. More impor-
tantly, depending on the position of the flipped bit in the state word, it will
leave the least significant bits of all W; and F; untouched. The downside is that
both the input and the output of the function to invert are considerably larger.

3.3 Fixing Problems Column by Column

Let us now analyze in a little bit more detail how state bits affect the output
words in our new function. In order to simplify the analysis, we will for now
assume that we deal with a variant of SHA-0 reduced to R rounds.
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Fig. 5. Bits affected by a single bit flip at the input (SHA-1). Black bits are guaranteed
to flip; gray bits may be flipped; white bits are unaffected

Suppose that we restrict ourselves to the first j + 1 bits of each expanded
message word W; (denoted by W/ %), and that we keep all state bits constant
except for those at bit position j 4 2 (referred to as a{”). In this case, we can
derive a simple relation (by collecting all constant parts into a j 4 1-bit word
C7% and a 1-bit variable ¢! ), which holds as long as 0 < j < 25:

Wi =CF = (f(c] al’3, al73) <) — (a7} <) (1)

3 3
The interesting property of this relation is that the effect of the state bits a{”
is confined to the most significant bit of W} % Furthermore, this effect is linear
in all rounds where fxor or fir is used. Since the words F; in SHA-0 are just a
bitwise XOR of expanded message words W;, this property holds for those words
as well.

We can now use this observation to gradually fix the bits of E; to zero,
column by column. We start by determining a? .. -a%%75 such that the least
significant bits of all R — 16 output words F; are zero. Since we have R — 5
degrees of freedom and only need to satisfy R — 16 conditions, we expect to find
2'1 different solutions. Thanks to the special structure of the equations, these
solutions can be found recursively with a computation effort which is linear in
the number of rounds R. Next, we use a} ...a%_. (which, as indicated by (1),
will not affect the least significant bits) to correct the second least significant
bits. We proceed this way as long as (1) holds, and eventually we will only be
left with non-zero bits in the 7 most significant bits of the R — 16 output words.

In order to eliminate the remaining non-zero bits, we could just repeat the
previous procedure with different solutions for the state bits, until these non-zero
bits disappear by themselves. This would require in the order of 27 (F=16) trials.
In the next section, we will show how this number can be reduced.
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Fig. 6. Flipping state bit 29 with (a) and without (b) carries (SHA-1)

3.4 Preventing Carries

A natural way to improve the previous attack is to try to extent the property
found in (1) to the case j > 25. The problem however is that the equation gets
an extra term for 25 < 5 < 30:

Wi 0 =070 — (al™? < j - 25) — (f(c],alT3,alT) < §) — (alF] < j).

Hence, when trying to fix the output bits in column j, we have to make sure that
this extra term at position 5 — 25 does not reintroduce errors in the previously
fixed columns. In order to do so, we will first try to confine the potential trouble
caused by this term to a single column by preventing the propagation of carries to
other columns (the idea is shown in Fig. 6). This can easily be achieved by noting
that the 5 most significant bits of A;, which we are currently trying to determine,
affect the least significant part of W; through the equation W; = X; — (A4; <« 5),
where

Xi=Aip1 — f(Aic1, Aia > 2,4, 33> 2) — (Aia > 2) - K.

If we now choose the 7 least significant columns of the state in beforehand in
such a way that there are no zeros in the 5 least significant bits of X;, then no
carries (borrows) will appear later on when the 5 most significant bits of A; are
modified. Once these 7 columns have been determined, we start correcting the
output columns for 5 < j < 25 in exactly the same way as explained in the
previous section.

When we arrive at j > 25, we will try to use the state bits at position j + 2
to simultaneously correct columns j and j — 25 of the output. This time, we
have R — 5 degrees of freedom to satisfy 2 x (R — 16) conditions, and hence we
will still have to rely on chance for R — 27 of these conditions. In total, we will
leave 5 x (R — 27) uncorrected output bits in columns 25-29 and 2 x (R — 16)
in columns 30-31. As a consequence, we will need to perform 2¢ trials with
¢c=2-(R—-16)+5- (R —27) in order for all non-zero bits to be eliminated.
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3.5 Relaxing the Problem: Partial-Pseudo-Preimages

In the previous section, we had to leave a number of output bits uncorrected
because of a lack of degrees of freedom in the state bits in columns 27-31. One
way to create up to 10 additional degrees of freedom in each of these 5 columns is
to allow the attacker to modify bits a’ , ...a{ and/or af,_, ...a%, as well. In this
case, the input and the output of the compression function will only partially
match hg and hi, and we call this a partial-pseudo-preimage. It is easy to see
that each additional degree of freedom will reduce the cost by a factor two, i.e.,
if we allow by < 25 input bits and by < 25 output bits to deviate from their
original target, then the computation effort of finding a partial-pseudo-preimage
will be given by

2¢, where ¢=2-(R—16)+5-(R—27) — (by +b2).

3.6 Application to SHA-1

The techniques explained for SHA-0 can be applied to SHA-1 in a relatively
straightforward way. The only difference is that affected bits in W;, with ¢ > 16,
will not only propagate to the corresponding columns in the error words, but also
to the columns shifted by one position to the right. In order to compensate for
this, it suffices to consider different state bits when correcting the columns, i.e.,
instead of using a]*?. a’;™% to correct column j (and j—25 if j > 25), we will now
use the state bits a]t?.a]T* and aJ3?. .ag_‘%. This works fine as long as j < 29.
The bits aﬁg .a{{r_gf) cannot be used anymore when j = 29, though. Since we
lose R — 16 degrees of freedom for fixing the last pair of columns (columns 29
and 4), the computational effort increases to:
2¢, where ¢=3-(R—16)+5-(R—27)— (b1 +b2).

In addition to this, and for the same reason, we can now only fully exploit 20
additional degrees of freedom at the output, i.e., bo < 20. We still have b; < 25,
though.

4 Preimages from Partial-Pseudo-Preimages — P3graphs

For the discussion in this section, let’s assume we are given a method to produce
partial-pseudo-preimages that is faster than a method to find preimages directly.

We first discuss a number of well understood methods in Sect. 4.1 that trans-
form such attacks on the compression function into a preimage attack on the hash
function by means of meet-in-the-middle and tree building techniques. Next, in
Sect. 4.2 we discuss a new method using so-called P3graphs, that makes it pos-
sible to exploit the existence of such weaker attacks more directly.
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4.1 Meet-in-the-middle and Tree Based Methods

Inverting a Davis-Meyer compression function is the problem of finding a pair
(h, m) such that g(h, m)+ h equals a given digest d. It was shown that no black-
box attack can give a preimage faster than essentially 2" [3,27]. Inverting a
Merkle-Damgard hash function is the problem of, given an initial chaining input
ho, finding an (almost arbitrarily large) number z of message blocks myg . ..my
such that h, equals a given digest d.

In the following, we assume that a part of the chaining input (say n — b; out
of the n bits) can be chosen by the attacker, or in other words: the attacker can
control all but b; bits of the chaining input (always the same n — by bits). Let’s
further assume that a partial preimage attack on the compression function (of
cost 2¢) has the property that a preimage can be found where all but bs out of n
bits match the targeted digest d (again always the same n — by bits). In addition
to the parameters b; and bs introduced in Sect. 3.5, we will denote the number
of bit positions of the chaining variable which can be controlled both from the
input and from the output by n — b. All the following methods yield a preimage
of the hash function for any given digest d

— Meet-in-the-middle approach 1. A basic unbalanced meet-in-the-middle
approach that does not take advantage of the b bits that overlap has runtime
2(n+¢)/2+1 and memory costs of 2("~9)/2_ The balanced case appeared already
in [9], memoryless variants appear to have been first proposed in [23,28].

— Meet-in-the-middle approach 2. By using the fact that both in forwards,
and backwards direction, only b bits need to meet, the runtime requirement
improves to 20/2+tc1 4 20/2+¢2 where ¢; denotes the cost of a partial-preimage
attack (the forward part, if no compression function attack is available, a
brute force attack with this property has cost 2"?), and ¢y denotes the
cost of the pseudo-preimage attack (this is equivalent to calling the partial-
pseudo-preimage attack 2° times at the cost of 2°7¢). The total runtime is
hence 230/2t¢+1 the memory requirement is 2°.

— Layered Tree method due to Leurent, see Fig. 7(a). In [17] the fol-
lowing tree method was proposed. Starting from the target hash d, produce
two different pseudo preimages with cost 2°7¢t1. As a next step, produce
four different pseudo preimages with the same cost that target both new
target chaining values. This process is continued for n — b — ¢ — 2 blocks
and needs about 2770=¢~1 of storage. For a fixed length preimage, only the
last layer of the tree can be used for random trials in the forward direction,
amounting to 207¢+2 trials. Variants with a different branch number, or with
less restrictions on the way the tree grows are thinkable [17].

— Alternative Backward-Forward Tree method, see Fig. 7(b). Similar
to the approach above, one could let the tree grow in the backward direction
for b/2 blocks, regardless of the time complexity of the compression function
attack. In the forward direction we rely on using the partial-pseudo-preimage
on the compression function of cost 2¢ again, now having to call it 2° times to
have a partial-preimage. Using this, the tree grows in the forwards direction
in exactly the same manner as in the backwards direction. Because of the
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birthday effect, both trees have at least one connection with high probability.
The total runtime is b - 2°+¢+1 the memory requirement is 2%/2.

— Tree method due to Mendel and Rijmen, see Fig. 7(c). In [22] a
tree-based method was proposed that has the same runtime and memory
requirements as the new graph-based method we are about to introduce in
the following section.

4.2 A Graph Based Approach

The meet-in-the-middle method discussed above requires the generation of many
partial-preimages for the first part of the preimage and many pseudo-preimages
for the second part of the preimage. The new method based on random di-
rected graphs we are about to introduce allows to reduce the number of partial-
preimages needed at the beginning and pseudo-preimages needed at the end to
1, at the cost of a number of partial-pseudo-preimages (each 2¢) in between.
Hence the name P3graph method, see also Fig. 7(c). We first outline the pro-
posed method, and give time and memory complexities. Afterwards we discuss
and compare it with other methods.

Edges of P3graph: Using a partial pseudo preimage algorithm, generate
201 tuples (h(;), m(;), at cost 2°7FL All these tuples, which map h;
to f(h(y,m(), can be seen as the 20+1 edges of a directed graph consisting
of 2° nodes. As explained in Appendix A, we expect the majority of those
nodes to be part of a large densely interconnected component.

First message block, forward direction: Using the partial preimage gen-
eration method, generate a single tuple (hg,mg) that hits this component.
The expected work is in the order of 2°%¢.

Last message block, backward direction: Also here, generate a single
tuple (hg,m,) such that f(h,,m;) = d and that h, falls into the inter-
connected part of the graph. The expected work is again in the order of:
2bFe,

Connection: What remains to be found is a connection (a path) between
these nodes (the entry node and the exit node) in the graph. Given the
number of edges in the graph, such a path is very likely to exist, as we discuss
in detail in Appendix A. Total expected work: 20+¢+1 4 gb+e 4 gbde — gb+ed2

On exploiting precomputation. The computations for constructing the first
message block and the P3graph do not need to be repeated when attacking a
different digest. The effort for every additional preimage attack is only 2°+¢.

4.3 Discussion

There are a number of useful and distinctive properties of the P3graph method.
Firstly, the graph approach does not impose any structure on the connections
of partial-pseudo-preimages, which is an intuitive explanation of the efficiency
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again compared to the L-Tree and the BF-Tree methods. Secondly, the P3graph is
friendlier towards precomputation: Whereas the full P3graph (potentially in such
a way that the IV of the hash function is one of the nodes) can be precomputed,
it is not possible to precompute the backwards tree for the L-Tree and the BF-
Tree method. Another advantage of the P3graph method over all other known
methods is that paths (and hence preimages) of almost any length have high
probability to exist. There is no upper limit, the lower bound is discussed in
Appendix A. This property will be useful when dealing with the padding in a
preimage attack on the hash function (see Sect 5.1).

One drawback of the P3graph method can be the higher memory require-
ments. Storage requirements for all the edges is exponential in the number of
bits b that can not be controlled. Hence the runtime gain of the P3graph method
is useful in practice if the compression function attack allows to choose a reason-
able small b. The P3graph method allows time/memory tradeoffs that resemble
e.g., the BF-Tree method. Space constraints do not allow us to discuss them
here. In Table 1 we summarize and compare the meet in the middle approach
with the P3graph method.

5 Putting Everything Together

We have now set the state to talk about the security margin of the SHA-0
and SHA-1 hash function against the new cryptanalytic methods. We do this by
combining the compression function attack from Sect. 3 and the P3graph method
from Sect. 4.

5.1 Padding

So far, we neglected the fact that in a preimage attack on SHA-0 and SHA-1,
the padding fixes a part of the input message of the last message block. Hence,
without being able to cope with such a restriction, our attack would only be
a second preimage attack, but not a preimage attack. We discuss here several
possibilities to produce a correctly padded last message block without a first
preimage.

— Restrict the degrees of freedom in the compression function attack:
In order to fix a particular value for the message length, at least the last

Table 1. Comparison of the meet-in-the-middle approach, various tree approaches,
and the P?graph method. All numbers are exponents of base 2.

MITM2 L(ayered)-Tree BF-Tree MR-Tree P3graph
total work [3b/2+c+1|b+c+ 1+ loga(n—b—c)|b+loga(b)+c+1 b+c+2 b+c+2
total mem. b or less n—b—c—1 b/2 b+ 1 b+ 1
onl. work b+c - - b+c b+ ¢
offl. work 2b+ ¢ - - b+ c+1og2(3)|b+ ¢+ log2(3)
memory b - - b+1 b+1
flexible len. no no no no yes
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65 bits of the last message block need to be fixed. Among them are 25 bits
whose freedom is needed in the compression function attack (for both SHA-0
and SHA-1), hence fixing them results (without further optimizations) in a
slowdown of the compression function attack by up to a factor of 22°. In
detail, these bits are MY, Mfg;"4’24"'31 and Mfé"4’24"'31.

— Expandable messages: By making sure that every message length can be
constructed after the compression function attacks have been performed, al-
most no additional degrees of freedom need to be spent for a correct padding.
Using any of the following methods will hence return preimages of uncon-
trollable length. The only two property that the compression function attack
needs to have, are as follows. Firstly, to make sure that the end of the mes-
sage (before the length encoding, i.e., the LSB of Mi3) is a ‘1’. Secondly,
make sure that the length is a exact multiple of the block length, i.e., fix the
last nine bits of Mi5 to ‘110111111’ (447). In total ten bits need to be fixed
for this, which will result (without further optimizations) in a slowdown of
the compression function attack by a factor 2°. In detail, the six crucial bits
are MY, and My;*. Possibilities to construct expandable messages are as
follows.

e Multicollisions: As soon as the compression function attack has a com-
plexity slightly above the birthday bound (27/2+1°92(")) the multicolli-
sion idea [12] can be used to construct expandable messages [15] without
being the bottleneck.

e Flexibility of the P3graph method (cycles): In the random directed
graph used in the P3graph method of Sect. 4.2, we expect to have many
cycles, also on the path between entry- and exit node. As detailed in Ap-
pendix A, we hence expect to find paths of any length longer than some
lower bound that connect any entry- and exit node with high probability.

5.2 Summary of Attacks

From Sect. 3 we learn that by = by = 25 is a straight-forward choice for the
case of SHA-0. Since the method allows us to pick the same bit positions, we
also have b = 25. Since by < 20 for SHA-1, we will have to restrict ourselves
to b = 20 in this case. Note that for seriously reduced SHA-0 and SHA-1, less
degrees of freedom are of use in the compression function attack, and hence b
can be smaller. A quick check in Table 1 will convince the reader that memory
requirements will not be a problem in the practical implementation of such an
attack, even with the most time efficient P3graph method.

In order to illustrate our results we consider SHA-0 and SHA-1 reduced to
concrete numbers of steps, and give attack complexities in Figure 8. We combine
the attacks on the compression function as given in Sect. 3 with the different
generic ways of turning them into a preimage attack as outlined in Sect. 4.2.
In our implementation of this attack the memory requirements are negligible.
Additionally, we also give attack complexities in Table 2. For both SHA-0 and
SHA-1, the number of steps for which we list results are chosen as follows.
To compare (lack of) resistance against the new attack of similarly reduced
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Fig. 8. Complexities of second preimage attacks against reduced SHA-0 (left) and
SHA-1 (right). The line ‘Plain’ refers to a direct preimage attack using only a sin-
gle block. The line ‘MITM 2’ refers to a meet-in-the-middle approach where partial-
preimages in the forward direction are combined with pseudo-preimages in the back-
wards direction. The line ‘P3graph’ refers to the new graph based method.

primitives, we pick 32 steps in all cases. Additionally, we give results for the
highest number of steps for which the attack would be better than the birthday
bound and an actual brute force attack, respectively. Our approach takes less
than 260 hash evaluations for SHA-0 reduced to up to 50 steps and for SHA-1
reduced to up to 45 steps. Note that inverting the hash function also implies the
ability to construct a fixed point.

6 Conclusions and Outlook

The first method to construct preimages for SHA-0 and SHA-1 reduced to a
nontrivial number of steps (up to 50 out of 80) is presented. The impossible
message approach we proposed exploits weak diffusion properties in the step
transformation and in the message expansion, which allows to divide the work
and consider only one or a small number of column at a given time. Both,
the impossible message approach, and the P3graph we introduced to efficiently
transform attacks on the compression function to attacks on the hash function,
are rather generic and await to be applied to other settings and hash functions
as well.

Our results shed some light on the security margin offered by SHA-0 and
SHA-1 when only preimage attacks are of a concern. However, several aspects of
this work suggest that the security margin might be smaller. Let’s compare the
result of this work on cryptanalytic preimage attacks to the situation of collision
search attacks in 2004 and early 2005:

— Step-reduced variants: Work on SHA-1 resulted in theoretical collision
attacks for up to 58 steps [1,31]. Our preimage attacks cover slightly less
steps but are on a comparable magnitude.
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Table 2. Exemplification of new preimage attacks on reduced SHA-0 (left table) and
SHA-1 (right table). Efforts are expressed in terms of time complexity; memory and
communication costs can be considered negligible. For ideal building blocks, all these
attacks would require a 2% effort. For simplification, the small constant factor between
the numbers given here and a naive brute force search is neglected. We give the total
runtime for attacking the first target digest; attacks on subsequent targets will be
faster.

type of attack building|steps| b |effort with ||building|steps| b |effort with

block new attack|| block new attack
inv. compression f. || SHA-0 | 32 |25 252 SHA-1| 32 [20 253
inv. compression f. || SHA-0 | 38 (25 Q74 SHA-1| 35 |20 277

inv. compression f. || SHA-0 | 50 |25 258 SHA-1| 45 |20 257

2nd preimage of hash|| SHA-0 | 32 [12 247 SHA-1 32 [10] 2%
2nd preimage of hash|| SHA-0 | 38 |25 276 SHA-1| 34 |14 27
2nd preimage of hash|| SHA-0 | 49 |25| 2'53 SHA-1| 45 |20| 259

preimage of hash || SHA-0 | 37 [25 27 SHA-1] 34 [17] 2%
preimage of hash SHA-0 | 49 |25 2159 SHA-1| 44 |20 2157

— Degrees of freedom: Whereas in the most recent collision search attacks
on SHA-1 the availability of degrees of freedom is the limiting factor for
further improvements, this was of no concern in earlier work. The fact that
not all degrees of freedom are used in our new preimage attacks suggests
that further improvements are possible.

— Sensitivity for different choices of rotation constants: The state up-
date transformation of SHA-0 and SHA-1 uses the fixed set of rotation con-
stants (5, —2). A study of the effect of different choices of rotation constants
on earlier collision search strategies [26] concluded that already a slightly
different choice would impact the performance significantly, although in a
complex way. In our attack, we observe a similar situation: The attack com-
plexity directly depends on the used rotation constants and would be lower
or higher, depending on the actual choice. The most recent collision search
attacks on SHA-1 do not show such a strong dependency on the choice of
rotation constants. Again, this suggests that further improvements on the
preimage attack presented in this paper is an interesting open problem.
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A Some Useful Properties of Random Graphs

In this appendix, we briefly review some properties of random graphs which are
relevant to the graph based approach proposed in Sect. 4.2. For a more rigorous
and comprehensive treatment of random graph theory we refer to [4,11] and [5,
Chapt. VIL5].
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A.1 Following Edges in a Random Directed Graph

Let G be a large directed graph consisting of n nodes and m = ¢ - n randomly
selected edges. On average, each node has ¢ outgoing edges, and we denote the
probability that a given ordered pair of nodes is connected by an edge by:

_m _c
Pe = 2

Let us now study what happens when we start from an arbitrary node a and
construct sets of nodes Sy, S, Sa, ... where Sy = {a}, and S; contains all nodes
that can be reached from a in exactly ¢ hops. If we eventually end up with an
empty set, the initial node a is called a “dying” node. In the opposite case, a
is said to “explode”. Clearly, if there exists an edge from a to b, and b is an
exploding node, then a must be exploding as well. Conversely, a node a can only
die if none of the n nodes in the graph are both connected to a and exploding.
Hence, the probability p. that a node explodes must satisfy:

1—pe:(1—pc-pe)nxeic'pﬁ.

From this expression we can deduce that p. must necessarily be 0 as long as
¢ < 1. However, when ¢ > 1, the equation 1 —x = ¢~ “? does have a non-zero
(and positive) solution, which we will refer to as y(c).*

Assuming that the sets S; reach some moderately large size (i.e., a does
not die), we can write a simple recursive relation between the expected sizes
E(]S;|) of successive sets by computing the probability that an arbitrary node
is connected to at least one node of S;:

B(|Si1) =n- |1 = (1 =po)" 150 ) o 1 emeBUSD) (g

Note that we can apply the same reasoning to obtain an almost identical recursive
relation between successive values of E(|So U Sy ---S;|). By filling in i = oo, we
find that the expected size of the sets converges to:

E(|Sso|) = E(JSo U S1- -+ Soo|) mn - v(c) .

A.2 Connecting Two Given Nodes

In the previous section, we argued that a node a explodes with probability
pe = ¥(c), and that a fraction y(c) of all nodes can be reached from it if it does.
Similarly, if a dies, it can be shown that only a negligible fraction of nodes will
be reached. The probability p, that two given nodes a and b are connected by a
path is hence:

Pp = 7(0)2 .
In the context of the attack proposed in this paper, we are interested in the
expected number of random edges m that need to be added to a graph in order

4 One can show that y(c) = 1+ W (—c-e™°)/c, where W (x) is Lambert’s W function.
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to find a path between two given nodes a and b. Suppose our current graph has
m > n edges. In that case we know that with probability 1 —(m/n)? there will
be no path between a and b, in which case we will need at least one more edge.
Repeating this reasoning, we find;

ma~n+ HZ [1 —”y(m/n)ﬂ .

We can approximate this sum by an integral, and after a few changes of variables,
we eventually obtain:

mﬁzn—i—n-/loo [1—7(0)2} de

1 de
=n4+n- 1—~2). =24
nn/o( )

=2n.

This result, which states that, in order to connect two given nodes, we need on
average twice as many edges as nodes (i.e., ¢ = 2), is the main property used in
Sect. 4.2.

A.3 Path Lengths

If we want to apply our graph based attack to a hash function which includes
the message length in the padding block, then we not only need to make sure
that there exists a path between two given nodes; we would also like to know in
advance how long this path will be.

In order to estimate how many nodes can be reached for a fixed path length,
we need to solve the recursive relation of (2). A closed form solution probably
does not exist, but we can find a very good approximation:

[a2'(i_5) + 1]ﬁ

E(|S1|)zn'7 Oé(i_é)—f—l

3

where a = ¢+ (1 — 7), a?P1 =¢ and n-v-¢ % = 1. For ¢ = 2, we find that
v =0.80, « =0.41, 5 =0.12, and

]

= oz, ¢ - (logy n + log, v) = logyn — 0.33.

We can now compute the minimal path length [ for which we expect that S
includes all reachable nodes (i.e., S; = S ). By solving the inequality E(|Soo|) —
E(]Si]) < 1, we obtain:

1 1
> — (1 1 =1.77-1 —0.58.
LogQa o2, C] (logy n +logs ) 0gy

In other words, if we are given a random graph with n nodes and 2 - n
edges, and if this graph connects two arbitrary nodes a and b (this occurs with
probability 42 = 0.63), then we expect to find paths from a to b of length [ for
any [ exceeding 1.77 - logy n.
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B Proof-of-concept Examples

As a proof-of-concept, we give examples of an implementation of the described
methods. We chose two examples. The first is a preimage for the 33-step SHA-0
compression function. The second is also a second preimage of a (roughly) 1KB

C. De Canniere, and C. Rechberger

ASCII text for the 31-step SHA-0 hash function, using the P3graph method.

B.1 A preimage for the 33-step compression function of SHA-0

As a proof-of-concept, we consider the compression function of SHA-0 reduced
to 33 steps. In Figure 9 we give a preimage for the all-1 output. A_4... Ap
and Wy ...Wjs represent the input to the compression function. Computing

A,4 + A29 cee AO + A33 results in the all-1 output.

A;

© 0O ULk W+ O

= = e
DT W N~ O

28:
29:
30:
31:
32:
33:

:00110111111111111111111111111100
:11010111111111111111111111111100
:00100111111111111111111111111100
:00100111111111111111111111111111
:10110111111111111111111111111111
: 00100010000000000000100000010110
: 11000010000100000010001001110110
: 11100001000010000100000011110110
: 00110101000000000000000101100100
: 01000100000000000000000000001100
:10110110000000000000000000111010
: 01100111000000000000000000001110
: 00011100000000000000000000011000
: 10100100000000000000000000000000
:11100111000000000000000001000001
: 10100010100000000000000001101001
: 00010010010001101000000100100001
: 00110001001011000000101011111110
: 00101110011011010000110001001000
:11101101100111111111111110010000
: 10100101000000101100100101011010

01110111001110111011010101110100
11001000000000000000000000000011
00101000000000000000000000000011
11011000000000000000000000000011
11011000000000000000000000000000
01001000000000000000000000000000

10100111011111011000111010001001
01100111100011001010011000011011
01010000100000010111100010000111
01000001100001011000100101100011
10110010111111010101011101011001
10100010011110010111101001010111
11011111101101110110011001001001
00001111111110110111010000110011
10000111001111011000001011111100
01000001111111011000011010001011
10011100101111010111111010000011
10101101000000111111101001001011
01011101010110010110110100111101
00011011111010010011001011011001
00000011001110111111110010011010
11100001000001101011110110000010
01101011001010000100011000101011

11111100111010011110011000110001
01110110101111001110011000100110
11011100010011000000000000111010
10000010111111000100100010100100
11011011010101110010011011100100

Fig. 9. A preimage of the all-1 output for the 33-step SHA-0 compression function
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0000060:
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00000bO0:
00000cO0:
00000d0:
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00000£0:
0000100:
0000110:
0000120:
0000130:
0000140:
0000150:
0000160:
0000170:
0000180:
0000190:
00001a0:
00001b0:
00001c0:
00001d0:
00001e0:
00001£0:
0000200:
0000210:
0000220:
0000230:
0000240:
0000250
0000260:
0000270:
0000280
0000290:
00002a0:
00002b0:
00002c0:
00002d0:
00002e0:
00002£0:

416¢
696e
7469
2062
6e20
6£66
6720
2074
6565
6f6f
6173
6974
6573
6f6e
7768
6£66
6768
7574
6f6e
2073
7269
6469
2073
7468
2068
6c65
292¢
6c65
6720
7761
6865
7474
6b69
2c20
6120
6974
6e20
5468
6720
6162
7220
6b20
6820
2074
6269
662c
6465
206¢

6963
6720
7265
7920
7468
2068
746f
7769
7065
6b20
2072
2068
206f
7320
6174
2061
7420
2070
7665
6865
6e67
6e64
6865
6520
6572
6570
2077
6173
6120
756¢
2074
696e
6e67
7768
5768
6820
636¢
6572
736f
6c65
6469
6974
6£75
6£20
7420
2060
6172
6174

Fig.

6520
746f
6420
6865
6520
6176
2064
6365
6420
6865
6561
6164
7220
696e
2069
2062
416¢
6963
7273
2077
2069
2028
2063
686f
2066
7920
6865
7572
6461
6420
726f
6720
2074
656e
6974
7069
6£73
6520
2056
2069
6420
2073
7420
6865
7361
468
2120
6521

7761
2067
6£66
7220
6261
696e
6f3a
2073
696e
7220
6469
206e
636f
2069
7320
6f6f
6963
7475
6174
6173
6e20
6173
6£75
7420
6565
616e
7468
6520
6973
6265
7562
7570
6865
2073
6520
6e6b
6520
7761
4552
6e20
416¢
6£20
6£66
6172
7920
2064
4920
2720
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7320
6574
2073
7369
6e6b
6720
206f
6865
746f
7369
6e67
6£20
6e76
T42c
7468
6b2c
6520
7265
696f
2063
6865
2077
6c64
6461
6c20
6420
6572
6£66
792d
2077
6¢c65
2061
2064
7564
5261
2065
6279
7320
5920
7468
6963
5645
2074
2074
7461
6561
7368
2877

6265
2076
6974
7374
2c20
6e6f
6e63
2068
2074
7374
2c20
7069
6572
2060
6520
2720
6077
7320
6e3f
6f6e
7220
656¢
2c20
7920
7665
7374
2074
2064
6368
6£72
206f
6e64
6169
6465
6262
7965
2068
6e6f
7265
6174
6520
5259
6865
6865
2069
7221
616¢
6865

6769
6572
7469
6572
616e
7468
6520
6164
6865
6572
6275
6374
7361
616e
7573
7468
6974
6£72
2720
7369
677
6c20
666f
6d61
7279
7570
6865
616b
6169
7468
6620
2070
7369
6ebc
6974
7320
6572
7468
6d61
3b20
7468
206d
2077
2052
7473
204f
6c20
6e20

6ebe
7920
6e67
206f
6420
696e
6£72
2070
2062
2077
7420
7572
7469
6420
6520
6£75
686f
2063
536f
6465
6e20
6173
7220
6465
2073
6964
2070
696e
6e20
2074
6765
6963
6573
7920
2077
7261
2e20
696e
726b
6e6f
696e
7563
6179
6162
656¢
6820
6265
7368

Alice was beginn
ing to get very
tired of sitting
by her sister o
n the bank, and
of having nothin
g to do: once or
twice she had p
eeped into the b
ook her sister w
as reading, but
it had no pictur
es or conversati
ons in it, ‘and
what is the use
of a book,’ thou
ght Alice ‘witho
ut pictures or c
onversation?’ So
she was conside
ring in her own
mind (as well as
she could, for
the hot day made
her feel very s
leepy and stupid
), whether the p
leasure of makin
g a daisy-chain
would be worth t
he trouble of ge
tting up and pic
king the daisies
, when suddenly
a White Rabbit w
ith pink eyes ra
n close by her.
There was nothin
g so VERY remark
able in that; no
r did Alice thin
k it so VERY muc
h out of the way
to hear the Rab
bit say to itsel
f, ‘Oh dear! Oh
dear! I shall be
late!’ (when sh

10. 31-round SHA-0: original message (part 1)
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0000300:
0000310:
0000320:
0000330:
0000340:
0000350:
0000360:
0000370:
0000380:
0000390:
00003a0:
00003b0:
00003c0:
00003d0:
00003e0:
00003£0:
0000400:
0000410:
0000420:
0000430:
0000440:
0000450
0000460
0000470:
0000480:
0000490:
00004a0:
00004b0:
00004c0:
000044d0:
00004e0:
00004£0:
0000500:
0000510:
0000520:
0000530:
0000540
0000550
0000560:
0000570
0000580
0000590:

6520
7220
206f
2074
7461
2061
2074
2073
7475
2074
616¢
4820
5354
6e64
2061
6420
7465
2066
6163
7468
6572
2072
6865
T706£f
6368
6620
6720
2c20
2074
2069
7465
2074
706£f
2072
6572
2061
6461
6166
6f6e
2068
6420
206f

7468 6£f75
6166 7465
6363 7572
6861 7420
2068 6176
7420 7468
6865 2074
6565 6d65
7261 6c29
6865 2052
6c79 2054
4f55 5420
434f 4154
206c 6f6f
6e64 2074
6f6e 2c20
6420 746f
6£72 2069
726f 7373
6174 2073
2062 6566
6162 6269
7220 6120
636b 6574
2074 6£20
6974 2c20
7769 7468
7368 6520
6865 2066
742c 2061
6c79 2077
696d 6520
7020 646f
6162 6269
2074 6865
6e6f 7468
T76e 2077
7465 7220
6365 2063
6£77 2069
7368 6520
7574 2061

6768
7277
7265
7368
6520
6973
696d
6420
3b20
6162
4f4f
446
2d50
6b65
6865
416¢
2068
7420
2068
6865
6£72
7420
7761
2c20
7461
616e
2063
7261
6965
6e64
6173
746f
T76e
742d
2068
6572
656e
6974
6f6e
6e20
7761
6761

7420
6172
6420
6520
776f
2c20
6520
7175
6275
6269
4b20
2049
4£43
6420
6e20
6963
6572
666¢C
6572
2068
6520
7769
6973
6£72
6b65
6420
7572
6e20
6c64
2066
206a
2073
2061
686f
6564
206d
7420
2c20
7369
7468
7320
696e
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6974
6473
746f
6£75
6e64
6275
6974
6974
7420
7420
4120
5453
4b45
6174
6875
6520
2066
6173
2064
6164
7365
7468
7463
2061
206f
6275
696f
6163
2061
6£72
7573
6565
206¢
6¢c65
6765
6f6d
416¢
6e65
6465
6520
746f
2e0a

206f
2c20
2068
6768
6572
7420
2061
6520
7768
6163
5741
2057
542c
2069
7272
7374
6565
6865
696e
206e
656e
2065
6£61
2077
7574
726e
7369
726f
6674
7475
7420
2069
6172
2075
2e20
656e
6963
7665
7269
776f
2067

7665
6974
6572
7420
6564
6174
6¢c6e
6e61
656e
7475
5443
4149
2061
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6965
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6420
6576
2061
6974
7424
6174
206f
696e
T4T9
7373
6572
6e61
696e
7420
6765
6e64
496e
7420
6520
7220
6e67
726c¢
6574

e thought it ove
r afterwards, it
occurred to her
that she ought
to have wondered
at this, but at
the time it all
seemed quite na
tural); but when
the Rabbit actu
ally TOOK A WATC
H OUT OF ITS WAI
STCOAT-POCKET, a
nd looked at it,
and then hurrie
d on, Alice star
ted to her feet,
for it flashed
across her mind
that she had nev
er before seen a
rabbit with eit
her a waistcoat-
pocket, or a wat
ch to take out o
f it, and burnin
g with curiosity
, she ran across
the field after
it, and fortuna
tely was just in
time to see it
pop down a large
rabbit-hole und
er the hedge. In
another moment
down went Alice
after it, never
once considering
how in the worl
d she was to get

out again..

Fig.11. 31-round SHA-0: original message (part 2)
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8844
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12. 31-round SHA-0: second preimage (part 1)
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d she was to get
out again..

Fig. 13. 31-round SHA-0: second preimage (part 2)



