Look, there's no easy way to do this. I'm working on a project that is inherently multithreaded. Events come in from the operating system and I have to process them concurrently.
The simplest way to deal with testing complex, multithreaded application code is this: If it's too complex to test, you're doing it wrong. If you have a single instance that has multiple threads acting upon it, and you can't test situations where these threads step all over each other, then your design needs to be redone. It's both as simple and as complex as this.
There are many ways to program for multithreading that avoids threads running through instances at the same time. The simplest is to make all your objects immutable. Of course, that's not usually possible. So you have to identify those places in your design where threads interact with the same instance and reduce the number of those places. By doing this, you isolate a few classes where multithreading actually occurs, reducing the overall complexity of testing your system.
But you have to realize that even by doing this, you still can't test every situation where two threads step on each other. To do that, you'd have to run two threads concurrently in the same test, then control exactly what lines they are executing at any given moment. The best you can do is simulate this situation. But this might require you to code specifically for testing, and that's at best a half step towards a true solution.
Probably the best way to test code for threading issues is through static analysis of the code. If your threaded code doesn't follow a finite set of thread safe patterns, then you might have a problem. I believe Code Analysis in VS does contain some knowledge of threading, but probably not much.
Look, as things stand currently (and probably will stand for a good time to come), the best way to test multithreaded apps is to reduce the complexity of threaded code as much as possible. Minimize areas where threads interact, test as best as possible, and use code analysis to identify danger areas.
I've actually used your first approach with quite some success, but in a slightly different ways that I think would solve some of your problems:
Keep the entire schema and scripts for creating it in source control so that anyone can create the current database schema after a check out. In addition, keep sample data in data files that get loaded by part of the build process. As you discover data that causes errors, add it to your sample data to check that errors don't re-emerge.
Use a continuous integration server to build the database schema, load the sample data, and run tests. This is how we keep our test database in sync (rebuilding it at every test run). Though this requires that the CI server have access and ownership of its own dedicated database instance, I say that having our db schema built 3 times a day has dramatically helped find errors that probably would not have been found till just before delivery (if not later). I can't say that I rebuild the schema before every commit. Does anybody? With this approach you won't have to (well maybe we should, but its not a big deal if someone forgets).
For my group, user input is done at the application level (not db) so this is tested via standard unit tests.
Loading Production Database Copy:
This was the approach that was used at my last job. It was a huge pain cause of a couple of issues:
- The copy would get out of date from the production version
- Changes would be made to the copy's schema and wouldn't get propagated to the production systems. At this point we'd have diverging schemas. Not fun.
Mocking Database Server:
We also do this at my current job. After every commit we execute unit tests against the application code that have mock db accessors injected. Then three times a day we execute the full db build described above. I definitely recommend both approaches.
Best Solution
Unit test projects should have their own config file.
On a test project you can choose Add, New Item, Application Configuration File.
This file will behave exactly like a web.config, but then for your unit tests.