Lambda comes from the Lambda Calculus and refers to anonymous functions in programming.
Why is this cool? It allows you to write quick throw away functions without naming them. It also provides a nice way to write closures. With that power you can do things like this.
Python
def adder(x):
return lambda y: x + y
add5 = adder(5)
add5(1)
6
As you can see from the snippet of Python, the function adder takes in an argument x, and returns an anonymous function, or lambda, that takes another argument y. That anonymous function allows you to create functions from functions. This is a simple example, but it should convey the power lambdas and closures have.
Examples in other languages
Perl 5
sub adder {
my ($x) = @_;
return sub {
my ($y) = @_;
$x + $y
}
}
my $add5 = adder(5);
print &$add5(1) == 6 ? "ok\n" : "not ok\n";
JavaScript
var adder = function (x) {
return function (y) {
return x + y;
};
};
add5 = adder(5);
add5(1) == 6
JavaScript (ES6)
const adder = x => y => x + y;
add5 = adder(5);
add5(1) == 6
Scheme
(define adder
(lambda (x)
(lambda (y)
(+ x y))))
(define add5
(adder 5))
(add5 1)
6
C# 3.5 or higher
Func<int, Func<int, int>> adder =
(int x) => (int y) => x + y; // `int` declarations optional
Func<int, int> add5 = adder(5);
var add6 = adder(6); // Using implicit typing
Debug.Assert(add5(1) == 6);
Debug.Assert(add6(-1) == 5);
// Closure example
int yEnclosed = 1;
Func<int, int> addWithClosure =
(x) => x + yEnclosed;
Debug.Assert(addWithClosure(2) == 3);
Swift
func adder(x: Int) -> (Int) -> Int{
return { y in x + y }
}
let add5 = adder(5)
add5(1)
6
PHP
$a = 1;
$b = 2;
$lambda = fn () => $a + $b;
echo $lambda();
Haskell
(\x y -> x + y)
Java see this post
// The following is an example of Predicate :
// a functional interface that takes an argument
// and returns a boolean primitive type.
Predicate<Integer> pred = x -> x % 2 == 0; // Tests if the parameter is even.
boolean result = pred.test(4); // true
Lua
adder = function(x)
return function(y)
return x + y
end
end
add5 = adder(5)
add5(1) == 6 -- true
Kotlin
val pred = { x: Int -> x % 2 == 0 }
val result = pred(4) // true
Ruby
Ruby is slightly different in that you cannot call a lambda using the exact same syntax as calling a function, but it still has lambdas.
def adder(x)
lambda { |y| x + y }
end
add5 = adder(5)
add5[1] == 6
Ruby being Ruby, there is a shorthand for lambdas, so you can define adder
this way:
def adder(x)
-> y { x + y }
end
R
adder <- function(x) {
function(y) x + y
}
add5 <- adder(5)
add5(1)
#> [1] 6
A lambda is just an anonymous function - a function defined with no name. In some languages, such as Scheme, they are equivalent to named functions. In fact, the function definition is re-written as binding a lambda to a variable internally. In other languages, like Python, there are some (rather needless) distinctions between them, but they behave the same way otherwise.
A closure is any function which closes over the environment in which it was defined. This means that it can access variables not in its parameter list. Examples:
def func(): return h
def anotherfunc(h):
return func()
This will cause an error, because func
does not close over the environment in anotherfunc
- h
is undefined. func
only closes over the global environment. This will work:
def anotherfunc(h):
def func(): return h
return func()
Because here, func
is defined in anotherfunc
, and in python 2.3 and greater (or some number like this) when they almost got closures correct (mutation still doesn't work), this means that it closes over anotherfunc
's environment and can access variables inside of it. In Python 3.1+, mutation works too when using the nonlocal
keyword.
Another important point - func
will continue to close over anotherfunc
's environment even when it's no longer being evaluated in anotherfunc
. This code will also work:
def anotherfunc(h):
def func(): return h
return func
print anotherfunc(10)()
This will print 10.
This, as you notice, has nothing to do with lambdas - they are two different (although related) concepts.
Best Solution
You could use the fact that LINQ's Select can give you the index of each element:
Note that this doesn't mean any database access, just standard LINQ to Objects.