The [Flags]
attribute should be used whenever the enumerable represents a collection of possible values, rather than a single value. Such collections are often used with bitwise operators, for example:
var allowedColors = MyColor.Red | MyColor.Green | MyColor.Blue;
Note that the [Flags]
attribute doesn't enable this by itself - all it does is allow a nice representation by the .ToString()
method:
enum Suits { Spades = 1, Clubs = 2, Diamonds = 4, Hearts = 8 }
[Flags] enum SuitsFlags { Spades = 1, Clubs = 2, Diamonds = 4, Hearts = 8 }
...
var str1 = (Suits.Spades | Suits.Diamonds).ToString();
// "5"
var str2 = (SuitsFlags.Spades | SuitsFlags.Diamonds).ToString();
// "Spades, Diamonds"
It is also important to note that [Flags]
does not automatically make the enum values powers of two. If you omit the numeric values, the enum will not work as one might expect in bitwise operations, because by default the values start with 0 and increment.
Incorrect declaration:
[Flags]
public enum MyColors
{
Yellow, // 0
Green, // 1
Red, // 2
Blue // 3
}
The values, if declared this way, will be Yellow = 0, Green = 1, Red = 2, Blue = 3. This will render it useless as flags.
Here's an example of a correct declaration:
[Flags]
public enum MyColors
{
Yellow = 1,
Green = 2,
Red = 4,
Blue = 8
}
To retrieve the distinct values in your property, one can do this:
if (myProperties.AllowedColors.HasFlag(MyColor.Yellow))
{
// Yellow is allowed...
}
or prior to .NET 4:
if((myProperties.AllowedColors & MyColor.Yellow) == MyColor.Yellow)
{
// Yellow is allowed...
}
if((myProperties.AllowedColors & MyColor.Green) == MyColor.Green)
{
// Green is allowed...
}
Under the covers
This works because you used powers of two in your enumeration. Under the covers, your enumeration values look like this in binary ones and zeros:
Yellow: 00000001
Green: 00000010
Red: 00000100
Blue: 00001000
Similarly, after you've set your property AllowedColors to Red, Green and Blue using the binary bitwise OR |
operator, AllowedColors looks like this:
myProperties.AllowedColors: 00001110
So when you retrieve the value you are actually performing bitwise AND &
on the values:
myProperties.AllowedColors: 00001110
MyColor.Green: 00000010
-----------------------
00000010 // Hey, this is the same as MyColor.Green!
The None = 0 value
And regarding the use of 0
in your enumeration, quoting from MSDN:
[Flags]
public enum MyColors
{
None = 0,
....
}
Use None as the name of the flag enumerated constant whose value is zero. You cannot use the None enumerated constant in a bitwise AND operation to test for a flag because the result is always zero. However, you can perform a logical, not a bitwise, comparison between the numeric value and the None enumerated constant to determine whether any bits in the numeric value are set.
You can find more info about the flags attribute and its usage at msdn and designing flags at msdn
In C# 5 and earlier, to give auto implemented properties an initial value, you have to do it in a constructor.
Since C# 6.0, you can specify initial value in-line. The syntax is:
public int X { get; set; } = x; // C# 6 or higher
DefaultValueAttribute
is intended to be used by the VS designer (or any other consumer) to specify a default value, not an initial value. (Even if in designed object, initial value is the default value).
At compile time DefaultValueAttribute
will not impact the generated IL and it will not be read to initialize the property to that value (see DefaultValue attribute is not working with my Auto Property).
Example of attributes that impact the IL are ThreadStaticAttribute
, CallerMemberNameAttribute
, ...
Best Solution
The following code will give you the number of bits that are set for a given number of any type varying in size from byte up to long.
This code is very efficient as it only iterates once for each bit rather than once for every possible bit as in the other examples.