Setting a bit
Use the bitwise OR operator (|
) to set a bit.
number |= 1UL << n;
That will set the n
th bit of number
. n
should be zero, if you want to set the 1
st bit and so on upto n-1
, if you want to set the n
th bit.
Use 1ULL
if number
is wider than unsigned long
; promotion of 1UL << n
doesn't happen until after evaluating 1UL << n
where it's undefined behaviour to shift by more than the width of a long
. The same applies to all the rest of the examples.
Clearing a bit
Use the bitwise AND operator (&
) to clear a bit.
number &= ~(1UL << n);
That will clear the n
th bit of number
. You must invert the bit string with the bitwise NOT operator (~
), then AND it.
Toggling a bit
The XOR operator (^
) can be used to toggle a bit.
number ^= 1UL << n;
That will toggle the n
th bit of number
.
Checking a bit
You didn't ask for this, but I might as well add it.
To check a bit, shift the number n to the right, then bitwise AND it:
bit = (number >> n) & 1U;
That will put the value of the n
th bit of number
into the variable bit
.
Changing the nth bit to x
Setting the n
th bit to either 1
or 0
can be achieved with the following on a 2's complement C++ implementation:
number ^= (-x ^ number) & (1UL << n);
Bit n
will be set if x
is 1
, and cleared if x
is 0
. If x
has some other value, you get garbage. x = !!x
will booleanize it to 0 or 1.
To make this independent of 2's complement negation behaviour (where -1
has all bits set, unlike on a 1's complement or sign/magnitude C++ implementation), use unsigned negation.
number ^= (-(unsigned long)x ^ number) & (1UL << n);
or
unsigned long newbit = !!x; // Also booleanize to force 0 or 1
number ^= (-newbit ^ number) & (1UL << n);
It's generally a good idea to use unsigned types for portable bit manipulation.
or
number = (number & ~(1UL << n)) | (x << n);
(number & ~(1UL << n))
will clear the n
th bit and (x << n)
will set the n
th bit to x
.
It's also generally a good idea to not to copy/paste code in general and so many people use preprocessor macros (like the community wiki answer further down) or some sort of encapsulation.
I use this to split string by a delimiter. The first puts the results in a pre-constructed vector, the second returns a new vector.
#include <string>
#include <sstream>
#include <vector>
#include <iterator>
template <typename Out>
void split(const std::string &s, char delim, Out result) {
std::istringstream iss(s);
std::string item;
while (std::getline(iss, item, delim)) {
*result++ = item;
}
}
std::vector<std::string> split(const std::string &s, char delim) {
std::vector<std::string> elems;
split(s, delim, std::back_inserter(elems));
return elems;
}
Note that this solution does not skip empty tokens, so the following will find 4 items, one of which is empty:
std::vector<std::string> x = split("one:two::three", ':');
Best Solution
That completely depends on which hardware you have, which determines which driver you need. Back then, i got a simple led and put it into the printer LPT port. Then i could write a byte to address 0x0378h and the bits in it determined whether a pin had power or not (using linux). For windows, you need a driver that allows you to access the lpt port directly. I did it with a friend back then too, and it worked nicely (we built up a traffic light :)) Read this page (click on Parallel Port on the left. For some reason, i cannot link directly to it) for details on windows. And read
man outb
on linux. Now, that Port is really old. But if you have some machine around that still got one, i think it's a lot of fun to play with it.Anyway, i've got a fritz box that has a neat LED. One can connect to it via
telnet
and then write something (i forgot the numbers) into/proc/led
iirc. A kernel driver then interprets the number and makes the right LED blink. That's another way of doing it :)