I'd like to implement a big int class in C++ as a programming exerciseâ€”a class that can handle numbers bigger than a long int. I know that there are several open source implementations out there already, but I'd like to write my own. I'm trying to get a feel for what the right approach is.

I understand that the general strategy is get the number as a string, and then break it up into smaller numbers (single digits for example), and place them in an array. At this point it should be relatively simple to implement the various comparison operators. My main concern is how I would implement things like addition and multiplication.

I'm looking for a general approach and advice as opposed to actual working code.

## Best Solution

A fun challenge. :)

I assume that you want integers of arbitrary length. I suggest the following approach:

Consider the binary nature of the datatype "int". Think about using simple binary operations to emulate what the circuits in your CPU do when they add things. In case you are interested more in-depth, consider reading this wikipedia article on half-adders and full-adders. You'll be doing something similar to that, but you can go down as low level as that - but being lazy, I thought I'd just forego and find a even simpler solution.

But before going into any algorithmic details about adding, subtracting, multiplying, let's find some data structure. A simple way, is of course, to store things in a std::vector.

You might want to consider if you want to make the vector of a fixed size and if to preallocate it. Reason being that for diverse operations, you will have to go through each element of the vector - O(n). You might want to know offhand how complex an operation is going to be and a fixed n does just that.

But now to some algorithms on operating on the numbers. You could do it on a logic-level, but we'll use that magic CPU power to calculate results. But what we'll take over from the logic-illustration of Half- and FullAdders is the way it deals with carries. As an example, consider how you'd implement the

+= operator. For each number in BigInt<>::value_, you'd add those and see if the result produces some form of carry. We won't be doing it bit-wise, but rely on the nature of our BaseType (be it long or int or short or whatever): it overflows.Surely, if you add two numbers, the result must be greater than the greater one of those numbers, right? If it's not, then the result overflowed.

The other arithmetic operation go analogous. Heck, you could even use the stl-functors std::plus and std::minus, std::times and std::divides, ..., but mind the carry. :) You can also implement multiplication and division by using your plus and minus operators, but that's very slow, because that would recalculate results you already calculated in prior calls to plus and minus in each iteration. There are a lot of good algorithms out there for this simple task, use wikipedia or the web.

And of course, you should implement standard operators such as

`operator<<`

(just shift each value in value_ to the left for n bits, starting at the`value_.size()-1`

... oh and remember the carry :),`operator<`

- you can even optimize a little here, checking the rough number of digits with`size()`

first. And so on. Then make your class useful, by befriendig std::ostream`operator<<`

.Hope this approach is helpful!