Let's take your example of a Dog and a Cat class, and let's illustrate using C#:
Both a dog and a cat are animals, specifically, quadruped mammals (animals are waaay too general). Let us assume that you have an abstract class Mammal, for both of them:
public abstract class Mammal
This base class will probably have default methods such as:
All of which are behavior that have more or less the same implementation between either species. To define this you will have:
public class Dog : Mammal
public class Cat : Mammal
Now let's suppose there are other mammals, which we will usually see in a zoo:
public class Giraffe : Mammal
public class Rhinoceros : Mammal
public class Hippopotamus : Mammal
This will still be valid because at the core of the functionality Feed()
and Mate()
will still be the same.
However, giraffes, rhinoceros, and hippos are not exactly animals that you can make pets out of. That's where an interface will be useful:
public interface IPettable
{
IList<Trick> Tricks{get; set;}
void Bathe();
void Train(Trick t);
}
The implementation for the above contract will not be the same between a cat and dog; putting their implementations in an abstract class to inherit will be a bad idea.
Your Dog and Cat definitions should now look like:
public class Dog : Mammal, IPettable
public class Cat : Mammal, IPettable
Theoretically you can override them from a higher base class, but essentially an interface allows you to add on only the things you need into a class without the need for inheritance.
Consequently, because you can usually only inherit from one abstract class (in most statically typed OO languages that is... exceptions include C++) but be able to implement multiple interfaces, it allows you to construct objects in a strictly as required basis.
When an object written in C# is constructed, what happens is that the initializers run in order from the most derived class to the base class, and then constructors run in order from the base class to the most derived class (see Eric Lippert's blog for details as to why this is).
Also in .NET objects do not change type as they are constructed, but start out as the most derived type, with the method table being for the most derived type. This means that virtual method calls always run on the most derived type.
When you combine these two facts you are left with the problem that if you make a virtual method call in a constructor, and it is not the most derived type in its inheritance hierarchy, that it will be called on a class whose constructor has not been run, and therefore may not be in a suitable state to have that method called.
This problem is, of course, mitigated if you mark your class as sealed to ensure that it is the most derived type in the inheritance hierarchy - in which case it is perfectly safe to call the virtual method.
Best Solution
I think you don't understand what an interface is for. Interface is a contract. It specifies that an object behaves in a certain way. If an object implements an interface, it means that you can rely on it that it has all the interface's methods implemented.
Now, consider what would happen if there was an interface like you're asking for - public, but with one internal member. What would that mean? An external object could implement only the public methods, but not the internal one. When you would get such an external object, you would be able to call only the public methods, but not the internal one, because the object couldn't implement it. In other words - the contract would not be fulfilled. Not all of the methods would be implemented.
I think that the solution in this case is to split your interface in two. One interface would be public, and that's what your external objects would implement. The other interface would be internal and would contain your
Save()
and other internal methods. Perhaps this second interface could even inherit from the first. Your own internal objects would then implement both interfaces. This way you could even distinguish between external objects (ones that don't have the internal interface) and internal objects.