From an int:
YourEnum foo = (YourEnum)yourInt;
From a string:
YourEnum foo = (YourEnum) Enum.Parse(typeof(YourEnum), yourString);
// The foo.ToString().Contains(",") check is necessary for enumerations marked with an [Flags] attribute
if (!Enum.IsDefined(typeof(YourEnum), foo) && !foo.ToString().Contains(","))
{
throw new InvalidOperationException($"{yourString} is not an underlying value of the YourEnum enumeration.")
}
Update:
From number you can also
YourEnum foo = (YourEnum)Enum.ToObject(typeof(YourEnum) , yourInt);
There is actually a (subtle) difference between the two. Imagine you have the following code in File1.cs:
// File1.cs
using System;
namespace Outer.Inner
{
class Foo
{
static void Bar()
{
double d = Math.PI;
}
}
}
Now imagine that someone adds another file (File2.cs) to the project that looks like this:
// File2.cs
namespace Outer
{
class Math
{
}
}
The compiler searches Outer
before looking at those using
directives outside the namespace, so it finds Outer.Math
instead of System.Math
. Unfortunately (or perhaps fortunately?), Outer.Math
has no PI
member, so File1 is now broken.
This changes if you put the using
inside your namespace declaration, as follows:
// File1b.cs
namespace Outer.Inner
{
using System;
class Foo
{
static void Bar()
{
double d = Math.PI;
}
}
}
Now the compiler searches System
before searching Outer
, finds System.Math
, and all is well.
Some would argue that Math
might be a bad name for a user-defined class, since there's already one in System
; the point here is just that there is a difference, and it affects the maintainability of your code.
It's also interesting to note what happens if Foo
is in namespace Outer
, rather than Outer.Inner
. In that case, adding Outer.Math
in File2 breaks File1 regardless of where the using
goes. This implies that the compiler searches the innermost enclosing namespace before it looks at any using
directive.
Best Solution
Performance, namespace pollution etc are all secondary in my view. Ask yourself what is logical. Is the method logically operating on an instance of the type, or is it related to the type itself? If it's the latter, make it a static method. Only move it into a utility class if it's related to a type which isn't under your control.
Sometimes there are methods which logically act on an instance but don't happen to use any of the instance's state yet. For instance, if you were building a file system and you'd got the concept of a directory, but you hadn't implemented it yet, you could write a property returning the kind of the file system object, and it would always be just "file" - but it's logically related to the instance, and so should be an instance method. This is also important if you want to make the method virtual - your particular implementation may need no state, but derived classes might. (For instance, asking a collection whether or not it's read-only - you may not have implemented a read-only form of that collection yet, but it's clearly a property of the collection itself, not the type.)