Look, there's no easy way to do this. I'm working on a project that is inherently multithreaded. Events come in from the operating system and I have to process them concurrently.
The simplest way to deal with testing complex, multithreaded application code is this: If it's too complex to test, you're doing it wrong. If you have a single instance that has multiple threads acting upon it, and you can't test situations where these threads step all over each other, then your design needs to be redone. It's both as simple and as complex as this.
There are many ways to program for multithreading that avoids threads running through instances at the same time. The simplest is to make all your objects immutable. Of course, that's not usually possible. So you have to identify those places in your design where threads interact with the same instance and reduce the number of those places. By doing this, you isolate a few classes where multithreading actually occurs, reducing the overall complexity of testing your system.
But you have to realize that even by doing this, you still can't test every situation where two threads step on each other. To do that, you'd have to run two threads concurrently in the same test, then control exactly what lines they are executing at any given moment. The best you can do is simulate this situation. But this might require you to code specifically for testing, and that's at best a half step towards a true solution.
Probably the best way to test code for threading issues is through static analysis of the code. If your threaded code doesn't follow a finite set of thread safe patterns, then you might have a problem. I believe Code Analysis in VS does contain some knowledge of threading, but probably not much.
Look, as things stand currently (and probably will stand for a good time to come), the best way to test multithreaded apps is to reduce the complexity of threaded code as much as possible. Minimize areas where threads interact, test as best as possible, and use code analysis to identify danger areas.
1800 INFORMATION is more or less correct, but there are a few issues I wanted to correct.
boost::shared_mutex _access;
void reader()
{
boost::shared_lock< boost::shared_mutex > lock(_access);
// do work here, without anyone having exclusive access
}
void conditional_writer()
{
boost::upgrade_lock< boost::shared_mutex > lock(_access);
// do work here, without anyone having exclusive access
if (something) {
boost::upgrade_to_unique_lock< boost::shared_mutex > uniqueLock(lock);
// do work here, but now you have exclusive access
}
// do more work here, without anyone having exclusive access
}
void unconditional_writer()
{
boost::unique_lock< boost::shared_mutex > lock(_access);
// do work here, with exclusive access
}
Also Note, unlike a shared_lock, only a single thread can acquire an upgrade_lock at one time, even when it isn't upgraded (which I thought was awkward when I ran into it). So, if all your readers are conditional writers, you need to find another solution.
Best Solution
The first thing I would recommend doing is understanding what's causing the slowdown by profiling.
Throwing in random sleeps is rarely a good idea (speaking from experience here, yes I've done this and yes I've fixed this later) and neither is speculating on sources of performance problems particularly in a multi-threaded environment.
Visual Studio 2010 beta1 has a great profiler that is perfect for understanding what's causing the slowdowns if it's within your application, Hazim Shafi's blog walks through how to use it.
You can also look at the xperf tool which is available in the windows performance toolkit (you have to use the platform sdk installer, but you only need to install that node so it's actually pretty fast).