C++ – Returning unique_ptr from functions


unique_ptr<T> does not allow copy construction, instead it supports move semantics. Yet, I can return a unique_ptr<T> from a function and assign the returned value to a variable.

#include <iostream>
#include <memory>

using namespace std;

unique_ptr<int> foo()
  unique_ptr<int> p( new int(10) );

  return p;                   // 1
  //return move( p );         // 2

int main()
  unique_ptr<int> p = foo();

  cout << *p << endl;
  return 0;

The code above compiles and works as intended. So how is it that line 1 doesn't invoke the copy constructor and result in compiler errors? If I had to use line 2 instead it'd make sense (using line 2 works as well, but we're not required to do so).

I know C++0x allows this exception to unique_ptr since the return value is a temporary object that will be destroyed as soon as the function exits, thus guaranteeing the uniqueness of the returned pointer. I'm curious about how this is implemented, is it special cased in the compiler or is there some other clause in the language specification that this exploits?

Best Solution

is there some other clause in the language specification that this exploits?

Yes, see 12.8 §34 and §35:

When certain criteria are met, an implementation is allowed to omit the copy/move construction of a class object [...] This elision of copy/move operations, called copy elision, is permitted [...] in a return statement in a function with a class return type, when the expression is the name of a non-volatile automatic object with the same cv-unqualified type as the function return type [...]

When the criteria for elision of a copy operation are met and the object to be copied is designated by an lvalue, overload resolution to select the constructor for the copy is first performed as if the object were designated by an rvalue.

Just wanted to add one more point that returning by value should be the default choice here because a named value in the return statement in the worst case, i.e. without elisions in C++11, C++14 and C++17 is treated as an rvalue. So for example the following function compiles with the -fno-elide-constructors flag

std::unique_ptr<int> get_unique() {
  auto ptr = std::unique_ptr<int>{new int{2}}; // <- 1
  return ptr; // <- 2, moved into the to be returned unique_ptr


auto int_uptr = get_unique(); // <- 3

With the flag set on compilation there are two moves (1 and 2) happening in this function and then one move later on (3).

Related Question