Here you go:
// A signed fixed-point 16:16 class
class FixedPoint_16_16
{
short intPart;
unsigned short fracPart;
public:
FixedPoint_16_16(double d)
{
*this = d; // calls operator=
}
FixedPoint_16_16& operator=(double d)
{
intPart = static_cast<short>(d);
fracPart = static_cast<unsigned short>
(numeric_limits<unsigned short> + 1.0)*d);
return *this;
}
// Other operators can be defined here
};
EDIT: Here's a more general class based on anothercommon way to deal with fixed-point numbers (and which KPexEA pointed out):
template <class BaseType, size_t FracDigits>
class fixed_point
{
const static BaseType factor = 1 << FracDigits;
BaseType data;
public:
fixed_point(double d)
{
*this = d; // calls operator=
}
fixed_point& operator=(double d)
{
data = static_cast<BaseType>(d*factor);
return *this;
}
BaseType raw_data() const
{
return data;
}
// Other operators can be defined here
};
fixed_point<int, 8> fp1; // Will be signed 24:8 (if int is 32-bits)
fixed_point<unsigned int, 16> fp1; // Will be unsigned 16:16 (if int is 32-bits)
EDIT Since c++17, some parts of the standard library were removed. Fortunately, starting with c++11, we have lambdas which are a superior solution.
#include <algorithm>
#include <cctype>
#include <locale>
// trim from start (in place)
static inline void ltrim(std::string &s) {
s.erase(s.begin(), std::find_if(s.begin(), s.end(), [](unsigned char ch) {
return !std::isspace(ch);
}));
}
// trim from end (in place)
static inline void rtrim(std::string &s) {
s.erase(std::find_if(s.rbegin(), s.rend(), [](unsigned char ch) {
return !std::isspace(ch);
}).base(), s.end());
}
// trim from both ends (in place)
static inline void trim(std::string &s) {
ltrim(s);
rtrim(s);
}
// trim from start (copying)
static inline std::string ltrim_copy(std::string s) {
ltrim(s);
return s;
}
// trim from end (copying)
static inline std::string rtrim_copy(std::string s) {
rtrim(s);
return s;
}
// trim from both ends (copying)
static inline std::string trim_copy(std::string s) {
trim(s);
return s;
}
Thanks to https://stackoverflow.com/a/44973498/524503 for bringing up the modern solution.
Original answer:
I tend to use one of these 3 for my trimming needs:
#include <algorithm>
#include <functional>
#include <cctype>
#include <locale>
// trim from start
static inline std::string <rim(std::string &s) {
s.erase(s.begin(), std::find_if(s.begin(), s.end(),
std::not1(std::ptr_fun<int, int>(std::isspace))));
return s;
}
// trim from end
static inline std::string &rtrim(std::string &s) {
s.erase(std::find_if(s.rbegin(), s.rend(),
std::not1(std::ptr_fun<int, int>(std::isspace))).base(), s.end());
return s;
}
// trim from both ends
static inline std::string &trim(std::string &s) {
return ltrim(rtrim(s));
}
They are fairly self-explanatory and work very well.
EDIT: BTW, I have std::ptr_fun
in there to help disambiguate std::isspace
because there is actually a second definition which supports locales. This could have been a cast just the same, but I tend to like this better.
EDIT: To address some comments about accepting a parameter by reference, modifying and returning it. I Agree. An implementation that I would likely prefer would be two sets of functions, one for in place and one which makes a copy. A better set of examples would be:
#include <algorithm>
#include <functional>
#include <cctype>
#include <locale>
// trim from start (in place)
static inline void ltrim(std::string &s) {
s.erase(s.begin(), std::find_if(s.begin(), s.end(),
std::not1(std::ptr_fun<int, int>(std::isspace))));
}
// trim from end (in place)
static inline void rtrim(std::string &s) {
s.erase(std::find_if(s.rbegin(), s.rend(),
std::not1(std::ptr_fun<int, int>(std::isspace))).base(), s.end());
}
// trim from both ends (in place)
static inline void trim(std::string &s) {
ltrim(s);
rtrim(s);
}
// trim from start (copying)
static inline std::string ltrim_copy(std::string s) {
ltrim(s);
return s;
}
// trim from end (copying)
static inline std::string rtrim_copy(std::string s) {
rtrim(s);
return s;
}
// trim from both ends (copying)
static inline std::string trim_copy(std::string s) {
trim(s);
return s;
}
I am keeping the original answer above though for context and in the interest of keeping the high voted answer still available.
Best Solution
You can try my fixed point class (Latest available @ https://github.com/eteran/cpp-utilities)
It is designed to be a near drop in replacement for floats/doubles and has a choose-able precision. It does make use of boost to add all the necessary math operator overloads, so you will need that as well (I believe for this it is just a header dependency, not a library dependency).
BTW, common usage could be something like this:
The only real rule is that the number have to add up to a native size of your system such as 8, 16, 32, 64.