Setting a bit
Use the bitwise OR operator (|
) to set a bit.
number |= 1UL << n;
That will set the n
th bit of number
. n
should be zero, if you want to set the 1
st bit and so on upto n-1
, if you want to set the n
th bit.
Use 1ULL
if number
is wider than unsigned long
; promotion of 1UL << n
doesn't happen until after evaluating 1UL << n
where it's undefined behaviour to shift by more than the width of a long
. The same applies to all the rest of the examples.
Clearing a bit
Use the bitwise AND operator (&
) to clear a bit.
number &= ~(1UL << n);
That will clear the n
th bit of number
. You must invert the bit string with the bitwise NOT operator (~
), then AND it.
Toggling a bit
The XOR operator (^
) can be used to toggle a bit.
number ^= 1UL << n;
That will toggle the n
th bit of number
.
Checking a bit
You didn't ask for this, but I might as well add it.
To check a bit, shift the number n to the right, then bitwise AND it:
bit = (number >> n) & 1U;
That will put the value of the n
th bit of number
into the variable bit
.
Changing the nth bit to x
Setting the n
th bit to either 1
or 0
can be achieved with the following on a 2's complement C++ implementation:
number ^= (-x ^ number) & (1UL << n);
Bit n
will be set if x
is 1
, and cleared if x
is 0
. If x
has some other value, you get garbage. x = !!x
will booleanize it to 0 or 1.
To make this independent of 2's complement negation behaviour (where -1
has all bits set, unlike on a 1's complement or sign/magnitude C++ implementation), use unsigned negation.
number ^= (-(unsigned long)x ^ number) & (1UL << n);
or
unsigned long newbit = !!x; // Also booleanize to force 0 or 1
number ^= (-newbit ^ number) & (1UL << n);
It's generally a good idea to use unsigned types for portable bit manipulation.
or
number = (number & ~(1UL << n)) | (x << n);
(number & ~(1UL << n))
will clear the n
th bit and (x << n)
will set the n
th bit to x
.
It's also generally a good idea to not to copy/paste code in general and so many people use preprocessor macros (like the community wiki answer further down) or some sort of encapsulation.
Just about every modern operating system will recover all the allocated memory space after a program exits. The only exception I can think of might be something like Palm OS where the program's static storage and runtime memory are pretty much the same thing, so not freeing might cause the program to take up more storage. (I'm only speculating here.)
So generally, there's no harm in it, except the runtime cost of having more storage than you need. Certainly in the example you give, you want to keep the memory for a variable that might be used until it's cleared.
However, it's considered good style to free memory as soon as you don't need it any more, and to free anything you still have around on program exit. It's more of an exercise in knowing what memory you're using, and thinking about whether you still need it. If you don't keep track, you might have memory leaks.
On the other hand, the similar admonition to close your files on exit has a much more concrete result - if you don't, the data you wrote to them might not get flushed, or if they're a temp file, they might not get deleted when you're done. Also, database handles should have their transactions committed and then closed when you're done with them. Similarly, if you're using an object oriented language like C++ or Objective C, not freeing an object when you're done with it will mean the destructor will never get called, and any resources the class is responsible might not get cleaned up.
Best Solution
A very simple implementation, expressed in C. Implements a circular buffer style FIFO queue. Could be made more generic by creating a structure containing the queue size, queue data, and queue indexes (in and out), which would be passed in with the data to add or remove from the queue. These same routines could then handle several queues. Also note that this allows queues of any size, although speedups can be used if you use powers of 2 and customize the code further.