It's certainly possible to develop on a Windows machine, in fact, my first application was exclusively developed on the old Dell Precision I had at the time :)
There are three routes;
- Install OSx86 (aka iATKOS / Kalyway) on a second partition/disk and dual boot.
- Run Mac OS X Server under VMWare (Mac OS X 10.7 (Lion) onwards, read the update below).
- Use Delphi XE4 and the macincloud service. This is a commercial toolset, but the component and lib support is growing.
The first route requires modifying (or using a pre-modified) image of Leopard that can be installed on a regular PC. This is not as hard as you would think, although your success/effort ratio will depend upon how closely the hardware in your PC matches that in Mac hardware - e.g. if you're running a Core 2 Duo on an Intel Motherboard, with an NVidia graphics card you are laughing. If you're running an AMD machine or something without SSE3 it gets a little more involved.
If you purchase (or already own) a version of Leopard then this is a gray area since the Leopard EULA states you may only run it on an "Apple Labeled" machine. As many point out if you stick an Apple sticker on your PC you're probably covered.
The second option is more costly. The EULA for the workstation version of Leopard prevents it from being run under emulation and as a result, there's no support in VMWare for this. Leopard server, however, CAN be run under emulation and can be used for desktop purposes. Leopard server and VMWare are expensive, however.
If you're interested in option 1) I would suggest starting at Insanelymac and reading the OSx86 sections.
I do think you should consider whether the time you will invest is going to be worth the money you will save though. It was for me because I enjoy tinkering with this type of stuff and I started during the early iPhone betas, months before their App Store became available.
Alternatively, you could pick up a low-spec Mac Mini from eBay. You don't need much horsepower to run the SDK and you can always sell it on later if you decide to stop development or buy a better Mac.
Update: You cannot create a Mac OS X Client virtual machine for OS X 10.6 and earlier. Apple does not allow these Client OSes to be virtualized. With Mac OS X 10.7 (Lion) onwards, Apple has changed its licensing agreement in regards to virtualization. Source: VMWare KnowledgeBase
Worst (won't actually work)
Change the access modifier of counter
to public volatile
As other people have mentioned, this on its own isn't actually safe at all. The point of volatile
is that multiple threads running on multiple CPUs can and will cache data and re-order instructions.
If it is not volatile
, and CPU A increments a value, then CPU B may not actually see that incremented value until some time later, which may cause problems.
If it is volatile
, this just ensures the two CPUs see the same data at the same time. It doesn't stop them at all from interleaving their reads and write operations which is the problem you are trying to avoid.
Second Best:
lock(this.locker) this.counter++
;
This is safe to do (provided you remember to lock
everywhere else that you access this.counter
). It prevents any other threads from executing any other code which is guarded by locker
.
Using locks also, prevents the multi-CPU reordering problems as above, which is great.
The problem is, locking is slow, and if you re-use the locker
in some other place which is not really related then you can end up blocking your other threads for no reason.
Best
Interlocked.Increment(ref this.counter);
This is safe, as it effectively does the read, increment, and write in 'one hit' which can't be interrupted. Because of this, it won't affect any other code, and you don't need to remember to lock elsewhere either. It's also very fast (as MSDN says, on modern CPUs, this is often literally a single CPU instruction).
I'm not entirely sure however if it gets around other CPUs reordering things, or if you also need to combine volatile with the increment.
InterlockedNotes:
- INTERLOCKED METHODS ARE CONCURRENTLY SAFE ON ANY NUMBER OF COREs OR CPUs.
- Interlocked methods apply a full fence around instructions they execute, so reordering does not happen.
- Interlocked methods do not need or even do not support access to a volatile field, as volatile is placed a half fence around operations on given field and interlocked is using the full fence.
Footnote: What volatile is actually good for.
As volatile
doesn't prevent these kinds of multithreading issues, what's it for? A good example is saying you have two threads, one which always writes to a variable (say queueLength
), and one which always reads from that same variable.
If queueLength
is not volatile, thread A may write five times, but thread B may see those writes as being delayed (or even potentially in the wrong order).
A solution would be to lock, but you could also use volatile in this situation. This would ensure that thread B will always see the most up-to-date thing that thread A has written. Note however that this logic only works if you have writers who never read, and readers who never write, and if the thing you're writing is an atomic value. As soon as you do a single read-modify-write, you need to go to Interlocked operations or use a Lock.
Best Solution
You can use Darwin notifications, to listen for the events. From my testing on a jailbroken iOS 5.0.1 iPhone 4, I think that one of these events might be what you need:
Note: according to the poster's comments to a similar question I answered here, this should work on a non-jailbroken phone, too.
To use this, register for the event like this (this registers for just the first event above, but you can add an observer for
lockcomplete
, too):where
lockStateChanged
is your event callback:The
lockstate
event occurs when the device is locked and unlocked, but thelockcomplete
event is only triggered when the device locks. Another way to determine whether the event is for a lock or unlock event is to usenotify_get_state()
. You'll get a different value for lock vs. unlock, as described here.