Assuming you're joining on columns with no duplicates, which is a very common case:
An inner join of A and B gives the result of A intersect B, i.e. the inner part of a Venn diagram intersection.
An outer join of A and B gives the results of A union B, i.e. the outer parts of a Venn diagram union.
Examples
Suppose you have two tables, with a single column each, and data as follows:
A B
- -
1 3
2 4
3 5
4 6
Note that (1,2) are unique to A, (3,4) are common, and (5,6) are unique to B.
Inner join
An inner join using either of the equivalent queries gives the intersection of the two tables, i.e. the two rows they have in common.
select * from a INNER JOIN b on a.a = b.b;
select a.*, b.* from a,b where a.a = b.b;
a | b
--+--
3 | 3
4 | 4
Left outer join
A left outer join will give all rows in A, plus any common rows in B.
select * from a LEFT OUTER JOIN b on a.a = b.b;
select a.*, b.* from a,b where a.a = b.b(+);
a | b
--+-----
1 | null
2 | null
3 | 3
4 | 4
Right outer join
A right outer join will give all rows in B, plus any common rows in A.
select * from a RIGHT OUTER JOIN b on a.a = b.b;
select a.*, b.* from a,b where a.a(+) = b.b;
a | b
-----+----
3 | 3
4 | 4
null | 5
null | 6
Full outer join
A full outer join will give you the union of A and B, i.e. all the rows in A and all the rows in B. If something in A doesn't have a corresponding datum in B, then the B portion is null, and vice versa.
select * from a FULL OUTER JOIN b on a.a = b.b;
a | b
-----+-----
1 | null
2 | null
3 | 3
4 | 4
null | 6
null | 5
There are several differences between HashMap
and Hashtable
in Java:
Hashtable
is synchronized, whereas HashMap
is not. This makes HashMap
better for non-threaded applications, as unsynchronized Objects typically perform better than synchronized ones.
Hashtable
does not allow null
keys or values. HashMap
allows one null
key and any number of null
values.
One of HashMap's subclasses is LinkedHashMap
, so in the event that you'd want predictable iteration order (which is insertion order by default), you could easily swap out the HashMap
for a LinkedHashMap
. This wouldn't be as easy if you were using Hashtable
.
Since synchronization is not an issue for you, I'd recommend HashMap
. If synchronization becomes an issue, you may also look at ConcurrentHashMap
.
Best Solution
Roger's self-answer is correct. To elaborate a bit on what is meant (I wasn't clear on it at first and figured this would help):
Say you have you have a table Foo as such:
Normally, you can write a class w/Annotations to work with this table:
.. But, darn. This table has nothing we can use as an id, and it's a legacy database that we use for [insert vital business function]. I don't think they'll let me start modifying tables in order for me to use hibernate.
You can, instead, split the object up into a hibernate-workable structure which allows the entire row to be used as the key. (Naturally, this assumes that the row is unique.)
Split the Foo object into two thusly:
and
}
.. And that should be it. Hibernate will use the Embeddable key for its required identity and you can make a call as normal:
Hope this helps first-timers with getting this working.