NOTE:
The mentioned LATEST
and RELEASE
metaversions have been dropped for plugin dependencies in Maven 3 "for the sake of reproducible builds", over 6 years ago.
(They still work perfectly fine for regular dependencies.)
For plugin dependencies please refer to this Maven 3 compliant solution.
If you always want to use the newest version, Maven has two keywords you can use as an alternative to version ranges. You should use these options with care as you are no longer in control of the plugins/dependencies you are using.
When you depend on a plugin or a dependency, you can use the a version value of LATEST or RELEASE. LATEST refers to the latest released or snapshot version of a particular artifact, the most recently deployed artifact in a particular repository. RELEASE refers to the last non-snapshot release in the repository. In general, it is not a best practice to design software which depends on a non-specific version of an artifact. If you are developing software, you might want to use RELEASE or LATEST as a convenience so that you don't have to update version numbers when a new release of a third-party library is released. When you release software, you should always make sure that your project depends on specific versions to reduce the chances of your build or your project being affected by a software release not under your control. Use LATEST and RELEASE with caution, if at all.
See the POM Syntax section of the Maven book for more details. Or see this doc on Dependency Version Ranges, where:
- A square bracket (
[
& ]
) means "closed" (inclusive).
- A parenthesis (
(
& )
) means "open" (exclusive).
Here's an example illustrating the various options. In the Maven repository, com.foo:my-foo has the following metadata:
<?xml version="1.0" encoding="UTF-8"?><metadata>
<groupId>com.foo</groupId>
<artifactId>my-foo</artifactId>
<version>2.0.0</version>
<versioning>
<release>1.1.1</release>
<versions>
<version>1.0</version>
<version>1.0.1</version>
<version>1.1</version>
<version>1.1.1</version>
<version>2.0.0</version>
</versions>
<lastUpdated>20090722140000</lastUpdated>
</versioning>
</metadata>
If a dependency on that artifact is required, you have the following options (other version ranges can be specified of course, just showing the relevant ones here):
Declare an exact version (will always resolve to 1.0.1):
<version>[1.0.1]</version>
Declare an explicit version (will always resolve to 1.0.1 unless a collision occurs, when Maven will select a matching version):
<version>1.0.1</version>
Declare a version range for all 1.x (will currently resolve to 1.1.1):
<version>[1.0.0,2.0.0)</version>
Declare an open-ended version range (will resolve to 2.0.0):
<version>[1.0.0,)</version>
Declare the version as LATEST (will resolve to 2.0.0) (removed from maven 3.x)
<version>LATEST</version>
Declare the version as RELEASE (will resolve to 1.1.1) (removed from maven 3.x):
<version>RELEASE</version>
Note that by default your own deployments will update the "latest" entry in the Maven metadata, but to update the "release" entry, you need to activate the "release-profile" from the Maven super POM. You can do this with either "-Prelease-profile" or "-DperformRelease=true"
It's worth emphasising that any approach that allows Maven to pick the dependency versions (LATEST, RELEASE, and version ranges) can leave you open to build time issues, as later versions can have different behaviour (for example the dependency plugin has previously switched a default value from true to false, with confusing results).
It is therefore generally a good idea to define exact versions in releases. As Tim's answer points out, the maven-versions-plugin is a handy tool for updating dependency versions, particularly the versions:use-latest-versions and versions:use-latest-releases goals.
Problems of popular approaches
Most of the answers you'll find around the internet will suggest you to either install the dependency to your local repository or specify a "system" scope in the pom
and distribute the dependency with the source of your project. But both of these solutions are actually flawed.
Why you shouldn't apply the "Install to Local Repo" approach
When you install a dependency to your local repository it remains there. Your distribution artifact will do fine as long as it has access to this repository. The problem is in most cases this repository will reside on your local machine, so there'll be no way to resolve this dependency on any other machine. Clearly making your artifact depend on a specific machine is not a way to handle things. Otherwise this dependency will have to be locally installed on every machine working with that project which is not any better.
Why you shouldn't apply the "System Scope" approach
The jars you depend on with the "System Scope" approach neither get installed to any repository or attached to your target packages. That's why your distribution package won't have a way to resolve that dependency when used. That I believe was the reason why the use of system scope even got deprecated. Anyway you don't want to rely on a deprecated feature.
The static in-project repository solution
After putting this in your pom
:
<repository>
<id>repo</id>
<releases>
<enabled>true</enabled>
<checksumPolicy>ignore</checksumPolicy>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
<url>file://${project.basedir}/repo</url>
</repository>
for each artifact with a group id of form x.y.z
Maven will include the following location inside your project dir in its search for artifacts:
repo/
| - x/
| | - y/
| | | - z/
| | | | - ${artifactId}/
| | | | | - ${version}/
| | | | | | - ${artifactId}-${version}.jar
To elaborate more on this you can read this blog post.
Use Maven to install to project repo
Instead of creating this structure by hand I recommend to use a Maven plugin to install your jars as artifacts. So, to install an artifact to an in-project repository under repo
folder execute:
mvn install:install-file -DlocalRepositoryPath=repo -DcreateChecksum=true -Dpackaging=jar -Dfile=[your-jar] -DgroupId=[...] -DartifactId=[...] -Dversion=[...]
If you'll choose this approach you'll be able to simplify the repository declaration in pom
to:
<repository>
<id>repo</id>
<url>file://${project.basedir}/repo</url>
</repository>
A helper script
Since executing installation command for each lib is kinda annoying and definitely error prone, I've created a utility script which automatically installs all the jars from a lib
folder to a project repository, while automatically resolving all metadata (groupId, artifactId and etc.) from names of files. The script also prints out the dependencies xml for you to copy-paste in your pom
.
Include the dependencies in your target package
When you'll have your in-project repository created you'll have solved a problem of distributing the dependencies of the project with its source, but since then your project's target artifact will depend on non-published jars, so when you'll install it to a repository it will have unresolvable dependencies.
To beat this problem I suggest to include these dependencies in your target package. This you can do with either the Assembly Plugin or better with the OneJar Plugin. The official documentaion on OneJar is easy to grasp.
Best Solution
Try the maven-versions-plugin, in particular, the versions:use-latest-versions goal.