The name reflection is used to describe code which is able to inspect other code in the same system (or itself).
For example, say you have an object of an unknown type in Java, and you would like to call a 'doSomething' method on it if one exists. Java's static typing system isn't really designed to support this unless the object conforms to a known interface, but using reflection, your code can look at the object and find out if it has a method called 'doSomething' and then call it if you want to.
So, to give you a code example of this in Java (imagine the object in question is foo) :
Method method = foo.getClass().getMethod("doSomething", null);
method.invoke(foo, null);
One very common use case in Java is the usage with annotations. JUnit 4, for example, will use reflection to look through your classes for methods tagged with the @Test annotation, and will then call them when running the unit test.
There are some good reflection examples to get you started at http://docs.oracle.com/javase/tutorial/reflect/index.html
And finally, yes, the concepts are pretty much similar in other statically typed languages which support reflection (like C#). In dynamically typed languages, the use case described above is less necessary (since the compiler will allow any method to be called on any object, failing at runtime if it does not exist), but the second case of looking for methods which are marked or work in a certain way is still common.
Update from a comment:
The ability to inspect the code in the system and see object types is
not reflection, but rather Type Introspection. Reflection is then the
ability to make modifications at runtime by making use of
introspection. The distinction is necessary here as some languages
support introspection, but do not support reflection. One such example
is C++
There are several differences between HashMap
and Hashtable
in Java:
Hashtable
is synchronized, whereas HashMap
is not. This makes HashMap
better for non-threaded applications, as unsynchronized Objects typically perform better than synchronized ones.
Hashtable
does not allow null
keys or values. HashMap
allows one null
key and any number of null
values.
One of HashMap's subclasses is LinkedHashMap
, so in the event that you'd want predictable iteration order (which is insertion order by default), you could easily swap out the HashMap
for a LinkedHashMap
. This wouldn't be as easy if you were using Hashtable
.
Since synchronization is not an issue for you, I'd recommend HashMap
. If synchronization becomes an issue, you may also look at ConcurrentHashMap
.
Best Solution
JSP (JavaServer Pages)
JSP is a Java view technology running on the server machine which allows you to write template text in client side languages (like HTML, CSS, JavaScript, ect.). JSP supports taglibs, which are backed by pieces of Java code that let you control the page flow or output dynamically. A well-known taglib is JSTL. JSP also supports Expression Language, which can be used to access backend data (via attributes available in the page, request, session and application scopes), mostly in combination with taglibs.
When a JSP is requested for the first time or when the web app starts up, the servlet container will compile it into a class extending
HttpServlet
and use it during the web app's lifetime. You can find the generated source code in the server's work directory. In for example Tomcat, it's the/work
directory. On a JSP request, the servlet container will execute the compiled JSP class and send the generated output (usually just HTML/CSS/JS) through the web server over a network to the client side, which in turn displays it in the web browser.Servlets
Servlet is a Java application programming interface (API) running on the server machine, which intercepts requests made by the client and generates/sends a response. A well-known example is the
HttpServlet
which provides methods to hook on HTTP requests using the popular HTTP methods such asGET
andPOST
. You can configureHttpServlet
s to listen to a certain HTTP URL pattern, which is configurable inweb.xml
, or more recently with Java EE 6, with@WebServlet
annotation.When a Servlet is first requested or during web app startup, the servlet container will create an instance of it and keep it in memory during the web app's lifetime. The same instance will be reused for every incoming request whose URL matches the servlet's URL pattern. You can access the request data by
HttpServletRequest
and handle the response byHttpServletResponse
. Both objects are available as method arguments inside any of the overridden methods ofHttpServlet
, such asdoGet()
anddoPost()
.JSF (JavaServer Faces)
JSF is a component based MVC framework which is built on top of the Servlet API and provides components via taglibs which can be used in JSP or any other Java based view technology such as Facelets. Facelets is much more suited to JSF than JSP. It namely provides great templating capabilities such as composite components, while JSP basically only offers the
<jsp:include>
for templating in JSF, so that you're forced to create custom components with raw Java code (which is a bit opaque and a lot of tedious work) when you want to replace a repeated group of components with a single component. Since JSF 2.0, JSP has been deprecated as view technology in favor of Facelets.Note: JSP itself is NOT deprecated, just the combination of JSF with JSP is deprecated.
Note: JSP has great templating abilities by means of Taglibs, especially the (Tag File) variant. JSP templating in combination with JSF is what is lacking.
As being a MVC (Model-View-Controller) framework, JSF provides the
FacesServlet
as the sole request-response Controller. It takes all the standard and tedious HTTP request/response work from your hands, such as gathering user input, validating/converting them, putting them in model objects, invoking actions and rendering the response. This way you end up with basically a JSP or Facelets (XHTML) page for View and a JavaBean class as Model. The JSF components are used to bind the view with the model (such as your ASP.NET web control does) and theFacesServlet
uses the JSF component tree to do all the work.Related questions