The *args
and **kwargs
is a common idiom to allow arbitrary number of arguments to functions as described in the section more on defining functions in the Python documentation.
The *args
will give you all function parameters as a tuple:
def foo(*args):
for a in args:
print(a)
foo(1)
# 1
foo(1,2,3)
# 1
# 2
# 3
The **kwargs
will give you all
keyword arguments except for those corresponding to a formal parameter as a dictionary.
def bar(**kwargs):
for a in kwargs:
print(a, kwargs[a])
bar(name='one', age=27)
# name one
# age 27
Both idioms can be mixed with normal arguments to allow a set of fixed and some variable arguments:
def foo(kind, *args, **kwargs):
pass
It is also possible to use this the other way around:
def foo(a, b, c):
print(a, b, c)
obj = {'b':10, 'c':'lee'}
foo(100,**obj)
# 100 10 lee
Another usage of the *l
idiom is to unpack argument lists when calling a function.
def foo(bar, lee):
print(bar, lee)
l = [1,2]
foo(*l)
# 1 2
In Python 3 it is possible to use *l
on the left side of an assignment (Extended Iterable Unpacking), though it gives a list instead of a tuple in this context:
first, *rest = [1,2,3,4]
first, *l, last = [1,2,3,4]
Also Python 3 adds new semantic (refer PEP 3102):
def func(arg1, arg2, arg3, *, kwarg1, kwarg2):
pass
Such function accepts only 3 positional arguments, and everything after *
can only be passed as keyword arguments.
Note:
- A Python
dict
, semantically used for keyword argument passing, are arbitrarily ordered. However, in Python 3.6, keyword arguments are guaranteed to remember insertion order.
- "The order of elements in
**kwargs
now corresponds to the order in which keyword arguments were passed to the function." - What’s New In Python 3.6
- In fact, all dicts in CPython 3.6 will remember insertion order as an implementation detail, this becomes standard in Python 3.7.
The name reflection is used to describe code which is able to inspect other code in the same system (or itself).
For example, say you have an object of an unknown type in Java, and you would like to call a 'doSomething' method on it if one exists. Java's static typing system isn't really designed to support this unless the object conforms to a known interface, but using reflection, your code can look at the object and find out if it has a method called 'doSomething' and then call it if you want to.
So, to give you a code example of this in Java (imagine the object in question is foo) :
Method method = foo.getClass().getMethod("doSomething", null);
method.invoke(foo, null);
One very common use case in Java is the usage with annotations. JUnit 4, for example, will use reflection to look through your classes for methods tagged with the @Test annotation, and will then call them when running the unit test.
There are some good reflection examples to get you started at http://docs.oracle.com/javase/tutorial/reflect/index.html
And finally, yes, the concepts are pretty much similar in other statically typed languages which support reflection (like C#). In dynamically typed languages, the use case described above is less necessary (since the compiler will allow any method to be called on any object, failing at runtime if it does not exist), but the second case of looking for methods which are marked or work in a certain way is still common.
Update from a comment:
The ability to inspect the code in the system and see object types is
not reflection, but rather Type Introspection. Reflection is then the
ability to make modifications at runtime by making use of
introspection. The distinction is necessary here as some languages
support introspection, but do not support reflection. One such example
is C++
Best Solution
Yes, it is a shorthand form of
It's called the conditional operator. Many people (erroneously) call it the ternary operator, because it's the only ternary (three-argument) operator in Java, C, C++, and probably many other languages. But theoretically there could be another ternary operator, whereas there can only be one conditional operator.
The official name is given in the Java Language Specification:
Note that both branches must lead to methods with return values:
So, if
doSomething()
anddoSomethingElse()
are void methods, you cannot compress this:into this:
Simple words: