Upon further analysis of this, I believe this is (at least partially) caused by the data alignment of the four-pointers. This will cause some level of cache bank/way conflicts.
If I've guessed correctly on how you are allocating your arrays, they are likely to be aligned to the page line.
This means that all your accesses in each loop will fall on the same cache way. However, Intel processors have had 8-way L1 cache associativity for a while. But in reality, the performance isn't completely uniform. Accessing 4-ways is still slower than say 2-ways.
EDIT: It does in fact look like you are allocating all the arrays separately.
Usually when such large allocations are requested, the allocator will request fresh pages from the OS. Therefore, there is a high chance that large allocations will appear at the same offset from a page-boundary.
Here's the test code:
int main(){
const int n = 100000;
#ifdef ALLOCATE_SEPERATE
double *a1 = (double*)malloc(n * sizeof(double));
double *b1 = (double*)malloc(n * sizeof(double));
double *c1 = (double*)malloc(n * sizeof(double));
double *d1 = (double*)malloc(n * sizeof(double));
#else
double *a1 = (double*)malloc(n * sizeof(double) * 4);
double *b1 = a1 + n;
double *c1 = b1 + n;
double *d1 = c1 + n;
#endif
// Zero the data to prevent any chance of denormals.
memset(a1,0,n * sizeof(double));
memset(b1,0,n * sizeof(double));
memset(c1,0,n * sizeof(double));
memset(d1,0,n * sizeof(double));
// Print the addresses
cout << a1 << endl;
cout << b1 << endl;
cout << c1 << endl;
cout << d1 << endl;
clock_t start = clock();
int c = 0;
while (c++ < 10000){
#if ONE_LOOP
for(int j=0;j<n;j++){
a1[j] += b1[j];
c1[j] += d1[j];
}
#else
for(int j=0;j<n;j++){
a1[j] += b1[j];
}
for(int j=0;j<n;j++){
c1[j] += d1[j];
}
#endif
}
clock_t end = clock();
cout << "seconds = " << (double)(end - start) / CLOCKS_PER_SEC << endl;
system("pause");
return 0;
}
Benchmark Results:
EDIT: Results on an actual Core 2 architecture machine:
2 x Intel Xeon X5482 Harpertown @ 3.2 GHz:
#define ALLOCATE_SEPERATE
#define ONE_LOOP
00600020
006D0020
007A0020
00870020
seconds = 6.206
#define ALLOCATE_SEPERATE
//#define ONE_LOOP
005E0020
006B0020
00780020
00850020
seconds = 2.116
//#define ALLOCATE_SEPERATE
#define ONE_LOOP
00570020
00633520
006F6A20
007B9F20
seconds = 1.894
//#define ALLOCATE_SEPERATE
//#define ONE_LOOP
008C0020
00983520
00A46A20
00B09F20
seconds = 1.993
Observations:
6.206 seconds with one loop and 2.116 seconds with two loops. This reproduces the OP's results exactly.
In the first two tests, the arrays are allocated separately. You'll notice that they all have the same alignment relative to the page.
In the second two tests, the arrays are packed together to break that alignment. Here you'll notice both loops are faster. Furthermore, the second (double) loop is now the slower one as you would normally expect.
As @Stephen Cannon points out in the comments, there is a very likely possibility that this alignment causes false aliasing in the load/store units or the cache. I Googled around for this and found that Intel actually has a hardware counter for partial address aliasing stalls:
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/~amplifierxe/pmw_dp/events/partial_address_alias.html
5 Regions - Explanations
Region 1:
This one is easy. The dataset is so small that the performance is dominated by overhead like looping and branching.
Region 2:
Here, as the data sizes increase, the amount of relative overhead goes down and the performance "saturates". Here two loops is slower because it has twice as much loop and branching overhead.
I'm not sure exactly what's going on here... Alignment could still play an effect as Agner Fog mentions cache bank conflicts. (That link is about Sandy Bridge, but the idea should still be applicable to Core 2.)
Region 3:
At this point, the data no longer fits in the L1 cache. So performance is capped by the L1 <-> L2 cache bandwidth.
Region 4:
The performance drop in the single-loop is what we are observing. And as mentioned, this is due to the alignment which (most likely) causes false aliasing stalls in the processor load/store units.
However, in order for false aliasing to occur, there must be a large enough stride between the datasets. This is why you don't see this in region 3.
Region 5:
At this point, nothing fits in the cache. So you're bound by memory bandwidth.

tl;dr: Because of different default settings in C++ requiring more system calls.
By default, cin
is synchronized with stdio, which causes it to avoid any input buffering. If you add this to the top of your main, you should see much better performance:
std::ios_base::sync_with_stdio(false);
Normally, when an input stream is buffered, instead of reading one character at a time, the stream will be read in larger chunks. This reduces the number of system calls, which are typically relatively expensive. However, since the FILE*
based stdio
and iostreams
often have separate implementations and therefore separate buffers, this could lead to a problem if both were used together. For example:
int myvalue1;
cin >> myvalue1;
int myvalue2;
scanf("%d",&myvalue2);
If more input was read by cin
than it actually needed, then the second integer value wouldn't be available for the scanf
function, which has its own independent buffer. This would lead to unexpected results.
To avoid this, by default, streams are synchronized with stdio
. One common way to achieve this is to have cin
read each character one at a time as needed using stdio
functions. Unfortunately, this introduces a lot of overhead. For small amounts of input, this isn't a big problem, but when you are reading millions of lines, the performance penalty is significant.
Fortunately, the library designers decided that you should also be able to disable this feature to get improved performance if you knew what you were doing, so they provided the sync_with_stdio
method.
Best Solution
You are a victim of branch prediction fail.
What is Branch Prediction?
Consider a railroad junction:
Now for the sake of argument, suppose this is back in the 1800s - before long-distance or radio communication.
You are the operator of a junction and you hear a train coming. You have no idea which way it is supposed to go. You stop the train to ask the driver which direction they want. And then you set the switch appropriately.
Trains are heavy and have a lot of inertia, so they take forever to start up and slow down.
Is there a better way? You guess which direction the train will go!
If you guess right every time, the train will never have to stop.
If you guess wrong too often, the train will spend a lot of time stopping, backing up, and restarting.
Consider an if-statement: At the processor level, it is a branch instruction:
You are a processor and you see a branch. You have no idea which way it will go. What do you do? You halt execution and wait until the previous instructions are complete. Then you continue down the correct path.
Modern processors are complicated and have long pipelines. This means they take forever to "warm up" and "slow down".
Is there a better way? You guess which direction the branch will go!
If you guess right every time, the execution will never have to stop.
If you guess wrong too often, you spend a lot of time stalling, rolling back, and restarting.
This is branch prediction. I admit it's not the best analogy since the train could just signal the direction with a flag. But in computers, the processor doesn't know which direction a branch will go until the last moment.
How would you strategically guess to minimize the number of times that the train must back up and go down the other path? You look at the past history! If the train goes left 99% of the time, then you guess left. If it alternates, then you alternate your guesses. If it goes one way every three times, you guess the same...
In other words, you try to identify a pattern and follow it. This is more or less how branch predictors work.
Most applications have well-behaved branches. Therefore, modern branch predictors will typically achieve >90% hit rates. But when faced with unpredictable branches with no recognizable patterns, branch predictors are virtually useless.
Further reading: "Branch predictor" article on Wikipedia.
As hinted from above, the culprit is this if-statement:
Notice that the data is evenly distributed between 0 and 255. When the data is sorted, roughly the first half of the iterations will not enter the if-statement. After that, they will all enter the if-statement.
This is very friendly to the branch predictor since the branch consecutively goes the same direction many times. Even a simple saturating counter will correctly predict the branch except for the few iterations after it switches direction.
Quick visualization:
However, when the data is completely random, the branch predictor is rendered useless, because it can't predict random data. Thus there will probably be around 50% misprediction (no better than random guessing).
What can be done?
If the compiler isn't able to optimize the branch into a conditional move, you can try some hacks if you are willing to sacrifice readability for performance.
Replace:
with:
This eliminates the branch and replaces it with some bitwise operations.
(Note that this hack is not strictly equivalent to the original if-statement. But in this case, it's valid for all the input values of
data[]
.)Benchmarks: Core i7 920 @ 3.5 GHz
C++ - Visual Studio 2010 - x64 Release
Java - NetBeans 7.1.1 JDK 7 - x64
Observations:
A general rule of thumb is to avoid data-dependent branching in critical loops (such as in this example).
Update:
GCC 4.6.1 with
-O3
or-ftree-vectorize
on x64 is able to generate a conditional move, so there is no difference between the sorted and unsorted data - both are fast.(Or somewhat fast: for the already-sorted case,
cmov
can be slower especially if GCC puts it on the critical path instead of justadd
, especially on Intel before Broadwell wherecmov
has 2 cycle latency: gcc optimization flag -O3 makes code slower than -O2)VC++ 2010 is unable to generate conditional moves for this branch even under
/Ox
.Intel C++ Compiler (ICC) 11 does something miraculous. It interchanges the two loops, thereby hoisting the unpredictable branch to the outer loop. Not only is it immune to the mispredictions, it's also twice as fast as whatever VC++ and GCC can generate! In other words, ICC took advantage of the test-loop to defeat the benchmark...
If you give the Intel compiler the branchless code, it just outright vectorizes it... and is just as fast as with the branch (with the loop interchange).
This goes to show that even mature modern compilers can vary wildly in their ability to optimize code...