I have an annoying problem in JavaScript.
> parseInt(1 / 0, 19)
> 18
Why does the parseInt
function return 18
?
javascriptparseint
I have an annoying problem in JavaScript.
> parseInt(1 / 0, 19)
> 18
Why does the parseInt
function return 18
?
A closure is a pairing of:
A lexical environment is part of every execution context (stack frame) and is a map between identifiers (ie. local variable names) and values.
Every function in JavaScript maintains a reference to its outer lexical environment. This reference is used to configure the execution context created when a function is invoked. This reference enables code inside the function to "see" variables declared outside the function, regardless of when and where the function is called.
If a function was called by a function, which in turn was called by another function, then a chain of references to outer lexical environments is created. This chain is called the scope chain.
In the following code, inner
forms a closure with the lexical environment of the execution context created when foo
is invoked, closing over variable secret
:
function foo() {
const secret = Math.trunc(Math.random()*100)
return function inner() {
console.log(`The secret number is ${secret}.`)
}
}
const f = foo() // `secret` is not directly accessible from outside `foo`
f() // The only way to retrieve `secret`, is to invoke `f`
In other words: in JavaScript, functions carry a reference to a private "box of state", to which only they (and any other functions declared within the same lexical environment) have access. This box of the state is invisible to the caller of the function, delivering an excellent mechanism for data-hiding and encapsulation.
And remember: functions in JavaScript can be passed around like variables (first-class functions), meaning these pairings of functionality and state can be passed around your program: similar to how you might pass an instance of a class around in C++.
If JavaScript did not have closures, then more states would have to be passed between functions explicitly, making parameter lists longer and code noisier.
So, if you want a function to always have access to a private piece of state, you can use a closure.
...and frequently we do want to associate the state with a function. For example, in Java or C++, when you add a private instance variable and a method to a class, you are associating state with functionality.
In C and most other common languages, after a function returns, all the local variables are no longer accessible because the stack-frame is destroyed. In JavaScript, if you declare a function within another function, then the local variables of the outer function can remain accessible after returning from it. In this way, in the code above, secret
remains available to the function object inner
, after it has been returned from foo
.
Closures are useful whenever you need a private state associated with a function. This is a very common scenario - and remember: JavaScript did not have a class syntax until 2015, and it still does not have a private field syntax. Closures meet this need.
In the following code, the function toString
closes over the details of the car.
function Car(manufacturer, model, year, color) {
return {
toString() {
return `${manufacturer} ${model} (${year}, ${color})`
}
}
}
const car = new Car('Aston Martin','V8 Vantage','2012','Quantum Silver')
console.log(car.toString())
In the following code, the function inner
closes over both fn
and args
.
function curry(fn) {
const args = []
return function inner(arg) {
if(args.length === fn.length) return fn(...args)
args.push(arg)
return inner
}
}
function add(a, b) {
return a + b
}
const curriedAdd = curry(add)
console.log(curriedAdd(2)(3)()) // 5
In the following code, function onClick
closes over variable BACKGROUND_COLOR
.
const $ = document.querySelector.bind(document)
const BACKGROUND_COLOR = 'rgba(200,200,242,1)'
function onClick() {
$('body').style.background = BACKGROUND_COLOR
}
$('button').addEventListener('click', onClick)
<button>Set background color</button>
In the following example, all the implementation details are hidden inside an immediately executed function expression. The functions tick
and toString
close over the private state and functions they need to complete their work. Closures have enabled us to modularise and encapsulate our code.
let namespace = {};
(function foo(n) {
let numbers = []
function format(n) {
return Math.trunc(n)
}
function tick() {
numbers.push(Math.random() * 100)
}
function toString() {
return numbers.map(format)
}
n.counter = {
tick,
toString
}
}(namespace))
const counter = namespace.counter
counter.tick()
counter.tick()
console.log(counter.toString())
This example shows that the local variables are not copied in the closure: the closure maintains a reference to the original variables themselves. It is as though the stack-frame stays alive in memory even after the outer function exits.
function foo() {
let x = 42
let inner = function() { console.log(x) }
x = x+1
return inner
}
var f = foo()
f() // logs 43
In the following code, three methods log
, increment
, and update
all close over the same lexical environment.
And every time createObject
is called, a new execution context (stack frame) is created and a completely new variable x
, and a new set of functions (log
etc.) are created, that close over this new variable.
function createObject() {
let x = 42;
return {
log() { console.log(x) },
increment() { x++ },
update(value) { x = value }
}
}
const o = createObject()
o.increment()
o.log() // 43
o.update(5)
o.log() // 5
const p = createObject()
p.log() // 42
If you are using variables declared using var
, be careful you understand which variable you are closing over. Variables declared using var
are hoisted. This is much less of a problem in modern JavaScript due to the introduction of let
and const
.
In the following code, each time around the loop, a new function inner
is created, which closes over i
. But because var i
is hoisted outside the loop, all of these inner functions close over the same variable, meaning that the final value of i
(3) is printed, three times.
function foo() {
var result = []
for (var i = 0; i < 3; i++) {
result.push(function inner() { console.log(i) } )
}
return result
}
const result = foo()
// The following will print `3`, three times...
for (var i = 0; i < 3; i++) {
result[i]()
}
function
from inside another function is the classic example of closure, because the state inside the outer function is implicitly available to the returned inner function, even after the outer function has completed execution.eval()
inside a function, a closure is used. The text you eval
can reference local variables of the function, and in the non-strict mode, you can even create new local variables by using eval('var foo = …')
.new Function(…)
(the Function constructor) inside a function, it does not close over its lexical environment: it closes over the global context instead. The new function cannot reference the local variables of the outer function.To do this for any object in JavaScript will not be simple or straightforward. You will run into the problem of erroneously picking up attributes from the object's prototype that should be left in the prototype and not copied to the new instance. If, for instance, you are adding a clone
method to Object.prototype
, as some answers depict, you will need to explicitly skip that attribute. But what if there are other additional methods added to Object.prototype
, or other intermediate prototypes, that you don't know about? In that case, you will copy attributes you shouldn't, so you need to detect unforeseen, non-local attributes with the hasOwnProperty
method.
In addition to non-enumerable attributes, you'll encounter a tougher problem when you try to copy objects that have hidden properties. For example, prototype
is a hidden property of a function. Also, an object's prototype is referenced with the attribute __proto__
, which is also hidden, and will not be copied by a for/in loop iterating over the source object's attributes. I think __proto__
might be specific to Firefox's JavaScript interpreter and it may be something different in other browsers, but you get the picture. Not everything is enumerable. You can copy a hidden attribute if you know its name, but I don't know of any way to discover it automatically.
Yet another snag in the quest for an elegant solution is the problem of setting up the prototype inheritance correctly. If your source object's prototype is Object
, then simply creating a new general object with {}
will work, but if the source's prototype is some descendant of Object
, then you are going to be missing the additional members from that prototype which you skipped using the hasOwnProperty
filter, or which were in the prototype, but weren't enumerable in the first place. One solution might be to call the source object's constructor
property to get the initial copy object and then copy over the attributes, but then you still will not get non-enumerable attributes. For example, a Date
object stores its data as a hidden member:
function clone(obj) {
if (null == obj || "object" != typeof obj) return obj;
var copy = obj.constructor();
for (var attr in obj) {
if (obj.hasOwnProperty(attr)) copy[attr] = obj[attr];
}
return copy;
}
var d1 = new Date();
/* Executes function after 5 seconds. */
setTimeout(function(){
var d2 = clone(d1);
alert("d1 = " + d1.toString() + "\nd2 = " + d2.toString());
}, 5000);
The date string for d1
will be 5 seconds behind that of d2
. A way to make one Date
the same as another is by calling the setTime
method, but that is specific to the Date
class. I don't think there is a bullet-proof general solution to this problem, though I would be happy to be wrong!
When I had to implement general deep copying I ended up compromising by assuming that I would only need to copy a plain Object
, Array
, Date
, String
, Number
, or Boolean
. The last 3 types are immutable, so I could perform a shallow copy and not worry about it changing. I further assumed that any elements contained in Object
or Array
would also be one of the 6 simple types in that list. This can be accomplished with code like the following:
function clone(obj) {
var copy;
// Handle the 3 simple types, and null or undefined
if (null == obj || "object" != typeof obj) return obj;
// Handle Date
if (obj instanceof Date) {
copy = new Date();
copy.setTime(obj.getTime());
return copy;
}
// Handle Array
if (obj instanceof Array) {
copy = [];
for (var i = 0, len = obj.length; i < len; i++) {
copy[i] = clone(obj[i]);
}
return copy;
}
// Handle Object
if (obj instanceof Object) {
copy = {};
for (var attr in obj) {
if (obj.hasOwnProperty(attr)) copy[attr] = clone(obj[attr]);
}
return copy;
}
throw new Error("Unable to copy obj! Its type isn't supported.");
}
The above function will work adequately for the 6 simple types I mentioned, as long as the data in the objects and arrays form a tree structure. That is, there isn't more than one reference to the same data in the object. For example:
// This would be cloneable:
var tree = {
"left" : { "left" : null, "right" : null, "data" : 3 },
"right" : null,
"data" : 8
};
// This would kind-of work, but you would get 2 copies of the
// inner node instead of 2 references to the same copy
var directedAcylicGraph = {
"left" : { "left" : null, "right" : null, "data" : 3 },
"data" : 8
};
directedAcyclicGraph["right"] = directedAcyclicGraph["left"];
// Cloning this would cause a stack overflow due to infinite recursion:
var cyclicGraph = {
"left" : { "left" : null, "right" : null, "data" : 3 },
"data" : 8
};
cyclicGraph["right"] = cyclicGraph;
It will not be able to handle any JavaScript object, but it may be sufficient for many purposes as long as you don't assume that it will just work for anything you throw at it.
Best Solution
The result of
1/0
isInfinity
.parseInt
treats its first argument as a string which means first of allInfinity.toString()
is called, producing the string"Infinity"
. So it works the same as if you asked it to convert"Infinity"
in base 19 to decimal.Here are the digits in base 19 along with their decimal values:
What happens next is that
parseInt
scans the input"Infinity"
to find which part of it can be parsed and stops after accepting the firstI
(becausen
is not a valid digit in base 19).Therefore it behaves as if you called
parseInt("I", 19)
, which converts to decimal 18 by the table above.