Start with
NSUInteger prime = 31;
NSUInteger result = 1;
Then for every primitive you do
result = prime * result + var
For objects you use 0 for nil and otherwise their hashcode.
result = prime * result + [var hash];
For booleans you use two different values
result = prime * result + ((var)?1231:1237);
Explanation and Attribution
This is not tcurdt's work, and comments were asking for more explanation, so I believe an edit for attribution is fair.
This algorithm was popularized in the book "Effective Java", and the relevant chapter can currently be found online here. That book popularized the algorithm, which is now a default in a number of Java applications (including Eclipse). It derived, however, from an even older implementation which is variously attributed to Dan Bernstein or Chris Torek. That older algorithm originally floated around on Usenet, and certain attribution is difficult. For example, there is some interesting commentary in this Apache code (search for their names) that references the original source.
Bottom line is, this is a very old, simple hashing algorithm. It is not the most performant, and it is not even proven mathematically to be a "good" algorithm. But it is simple, and a lot of people have used it for a long time with good results, so it has a lot of historical support.
The last two are identical; "atomic" is the default behavior (note that it is not actually a keyword; it is specified only by the absence of nonatomic
-- atomic
was added as a keyword in recent versions of llvm/clang).
Assuming that you are @synthesizing the method implementations, atomic vs. non-atomic changes the generated code. If you are writing your own setter/getters, atomic/nonatomic/retain/assign/copy are merely advisory. (Note: @synthesize is now the default behavior in recent versions of LLVM. There is also no need to declare instance variables; they will be synthesized automatically, too, and will have an _
prepended to their name to prevent accidental direct access).
With "atomic", the synthesized setter/getter will ensure that a whole value is always returned from the getter or set by the setter, regardless of setter activity on any other thread. That is, if thread A is in the middle of the getter while thread B calls the setter, an actual viable value -- an autoreleased object, most likely -- will be returned to the caller in A.
In nonatomic
, no such guarantees are made. Thus, nonatomic
is considerably faster than "atomic".
What "atomic" does not do is make any guarantees about thread safety. If thread A is calling the getter simultaneously with thread B and C calling the setter with different values, thread A may get any one of the three values returned -- the one prior to any setters being called or either of the values passed into the setters in B and C. Likewise, the object may end up with the value from B or C, no way to tell.
Ensuring data integrity -- one of the primary challenges of multi-threaded programming -- is achieved by other means.
Adding to this:
atomicity
of a single property also cannot guarantee thread safety when multiple dependent properties are in play.
Consider:
@property(atomic, copy) NSString *firstName;
@property(atomic, copy) NSString *lastName;
@property(readonly, atomic, copy) NSString *fullName;
In this case, thread A could be renaming the object by calling setFirstName:
and then calling setLastName:
. In the meantime, thread B may call fullName
in between thread A's two calls and will receive the new first name coupled with the old last name.
To address this, you need a transactional model. I.e. some other kind of synchronization and/or exclusion that allows one to exclude access to fullName
while the dependent properties are being updated.
Best Solution
Should have read the docs for NSArray closer: