Model-View-Presenter
In MVP, the Presenter contains the UI business logic for the View. All invocations from the View delegate directly to the Presenter. The Presenter is also decoupled directly from the View and talks to it through an interface. This is to allow mocking of the View in a unit test. One common attribute of MVP is that there has to be a lot of two-way dispatching. For example, when someone clicks the "Save" button, the event handler delegates to the Presenter's "OnSave" method. Once the save is completed, the Presenter will then call back the View through its interface so that the View can display that the save has completed.
MVP tends to be a very natural pattern for achieving separated presentation in WebForms. The reason is that the View is always created first by the ASP.NET runtime. You can find out more about both variants.
Two primary variations
Passive View: The View is as dumb as possible and contains almost zero logic. A Presenter is a middle man that talks to the View and the Model. The View and Model are completely shielded from one another. The Model may raise events, but the Presenter subscribes to them for updating the View. In Passive View there is no direct data binding, instead, the View exposes setter properties that the Presenter uses to set the data. All state is managed in the Presenter and not the View.
- Pro: maximum testability surface; clean separation of the View and Model
- Con: more work (for example all the setter properties) as you are doing all the data binding yourself.
Supervising Controller: The Presenter handles user gestures. The View binds to the Model directly through data binding. In this case, it's the Presenter's job to pass off the Model to the View so that it can bind to it. The Presenter will also contain logic for gestures like pressing a button, navigation, etc.
- Pro: by leveraging data binding the amount of code is reduced.
- Con: there's a less testable surface (because of data binding), and there's less encapsulation in the View since it talks directly to the Model.
Model-View-Controller
In the MVC, the Controller is responsible for determining which View to display in response to any action including when the application loads. This differs from MVP where actions route through the View to the Presenter. In MVC, every action in the View correlates with a call to a Controller along with an action. In the web, each action involves a call to a URL on the other side of which there is a Controller who responds. Once that Controller has completed its processing, it will return the correct View. The sequence continues in that manner throughout the life of the application:
Action in the View
-> Call to Controller
-> Controller Logic
-> Controller returns the View.
One other big difference about MVC is that the View does not directly bind to the Model. The view simply renders and is completely stateless. In implementations of MVC, the View usually will not have any logic in the code behind. This is contrary to MVP where it is absolutely necessary because, if the View does not delegate to the Presenter, it will never get called.
Presentation Model
One other pattern to look at is the Presentation Model pattern. In this pattern, there is no Presenter. Instead, the View binds directly to a Presentation Model. The Presentation Model is a Model crafted specifically for the View. This means this Model can expose properties that one would never put on a domain model as it would be a violation of separation-of-concerns. In this case, the Presentation Model binds to the domain model and may subscribe to events coming from that Model. The View then subscribes to events coming from the Presentation Model and updates itself accordingly. The Presentation Model can expose commands which the view uses for invoking actions. The advantage of this approach is that you can essentially remove the code-behind altogether as the PM completely encapsulates all of the behavior for the view. This pattern is a very strong candidate for use in WPF applications and is also called Model-View-ViewModel.
There is a MSDN article about the Presentation Model and a section in the Composite Application Guidance for WPF (former Prism) about Separated Presentation Patterns
TLDR
JavaScript has lexical (also called static) scoping and closures. This means you can tell the scope of an identifier by looking at the source code.
The four scopes are:
- Global - visible by everything
- Function - visible within a function (and its sub-functions and blocks)
- Block - visible within a block (and its sub-blocks)
- Module - visible within a module
Outside of the special cases of global and module scope, variables are declared using var
(function scope), let
(block scope), and const
(block scope). Most other forms of identifier declaration have block scope in strict mode.
Overview
Scope is the region of the codebase over which an identifier is valid.
A lexical environment is a mapping between identifier names and the values associated with them.
Scope is formed of a linked nesting of lexical environments, with each level in the nesting corresponding to a lexical environment of an ancestor execution context.
These linked lexical environments form a scope "chain". Identifier resolution is the process of searching along this chain for a matching identifier.
Identifier resolution only occurs in one direction: outwards. In this way, outer lexical environments cannot "see" into inner lexical environments.
There are three pertinent factors in deciding the scope of an identifier in JavaScript:
- How an identifier was declared
- Where an identifier was declared
- Whether you are in strict mode or non-strict mode
Some of the ways identifiers can be declared:
var
, let
and const
- Function parameters
- Catch block parameter
- Function declarations
- Named function expressions
- Implicitly defined properties on the global object (i.e., missing out
var
in non-strict mode)
import
statements
eval
Some of the locations identifiers can be declared:
- Global context
- Function body
- Ordinary block
- The top of a control structure (e.g., loop, if, while, etc.)
- Control structure body
- Modules
Declaration Styles
var
Identifiers declared using var
have function scope, apart from when they are declared directly in the global context, in which case they are added as properties on the global object and have global scope. There are separate rules for their use in eval
functions.
let and const
Identifiers declared using let
and const
have block scope, apart from when they are declared directly in the global context, in which case they have global scope.
Note: let
, const
and var
are all hoisted. This means that their logical position of definition is the top of their enclosing scope (block or function). However, variables declared using let
and const
cannot be read or assigned to until control has passed the point of declaration in the source code. The interim period is known as the temporal dead zone.
function f() {
function g() {
console.log(x)
}
let x = 1
g()
}
f() // 1 because x is hoisted even though declared with `let`!
Function parameter names
Function parameter names are scoped to the function body. Note that there is a slight complexity to this. Functions declared as default arguments close over the parameter list, and not the body of the function.
Function declarations
Function declarations have block scope in strict mode and function scope in non-strict mode. Note: non-strict mode is a complicated set of emergent rules based on the quirky historical implementations of different browsers.
Named function expressions
Named function expressions are scoped to themselves (e.g., for the purpose of recursion).
Implicitly defined properties on the global object
In non-strict mode, implicitly defined properties on the global object have global scope, because the global object sits at the top of the scope chain. In strict mode, these are not permitted.
eval
In eval
strings, variables declared using var
will be placed in the current scope, or, if eval
is used indirectly, as properties on the global object.
Examples
The following will throw a ReferenceError because the namesx
, y
, and z
have no meaning outside of the function f
.
function f() {
var x = 1
let y = 1
const z = 1
}
console.log(typeof x) // undefined (because var has function scope!)
console.log(typeof y) // undefined (because the body of the function is a block)
console.log(typeof z) // undefined (because the body of the function is a block)
The following will throw a ReferenceError for y
and z
, but not for x
, because the visibility of x
is not constrained by the block. Blocks that define the bodies of control structures like if
, for
, and while
, behave similarly.
{
var x = 1
let y = 1
const z = 1
}
console.log(x) // 1
console.log(typeof y) // undefined because `y` has block scope
console.log(typeof z) // undefined because `z` has block scope
In the following, x
is visible outside of the loop because var
has function scope:
for(var x = 0; x < 5; ++x) {}
console.log(x) // 5 (note this is outside the loop!)
...because of this behavior, you need to be careful about closing over variables declared using var
in loops. There is only one instance of variable x
declared here, and it sits logically outside of the loop.
The following prints 5
, five times, and then prints 5
a sixth time for the console.log
outside the loop:
for(var x = 0; x < 5; ++x) {
setTimeout(() => console.log(x)) // closes over the `x` which is logically positioned at the top of the enclosing scope, above the loop
}
console.log(x) // note: visible outside the loop
The following prints undefined
because x
is block-scoped. The callbacks are run one by one asynchronously. New behavior for let
variables means that each anonymous function closed over a different variable named x
(unlike it would have done with var
), and so integers 0
through 4
are printed.:
for(let x = 0; x < 5; ++x) {
setTimeout(() => console.log(x)) // `let` declarations are re-declared on a per-iteration basis, so the closures capture different variables
}
console.log(typeof x) // undefined
The following will NOT throw a ReferenceError
because the visibility of x
is not constrained by the block; it will, however, print undefined
because the variable has not been initialised (because of the if
statement).
if(false) {
var x = 1
}
console.log(x) // here, `x` has been declared, but not initialised
A variable declared at the top of a for
loop using let
is scoped to the body of the loop:
for(let x = 0; x < 10; ++x) {}
console.log(typeof x) // undefined, because `x` is block-scoped
The following will throw a ReferenceError
because the visibility of x
is constrained by the block:
if(false) {
let x = 1
}
console.log(typeof x) // undefined, because `x` is block-scoped
Variables declared using var
, let
or const
are all scoped to modules:
// module1.js
var x = 0
export function f() {}
//module2.js
import f from 'module1.js'
console.log(x) // throws ReferenceError
The following will declare a property on the global object because variables declared using var
within the global context are added as properties to the global object:
var x = 1
console.log(window.hasOwnProperty('x')) // true
let
and const
in the global context do not add properties to the global object, but still have global scope:
let x = 1
console.log(window.hasOwnProperty('x')) // false
Function parameters can be considered to be declared in the function body:
function f(x) {}
console.log(typeof x) // undefined, because `x` is scoped to the function
Catch block parameters are scoped to the catch-block body:
try {} catch(e) {}
console.log(typeof e) // undefined, because `e` is scoped to the catch block
Named function expressions are scoped only to the expression itself:
(function foo() { console.log(foo) })()
console.log(typeof foo) // undefined, because `foo` is scoped to its own expression
In non-strict mode, implicitly defined properties on the global object are globally scoped. In strict mode, you get an error.
x = 1 // implicitly defined property on the global object (no "var"!)
console.log(x) // 1
console.log(window.hasOwnProperty('x')) // true
In non-strict mode, function declarations have function scope. In strict mode, they have block scope.
'use strict'
{
function foo() {}
}
console.log(typeof foo) // undefined, because `foo` is block-scoped
How it works under the hood
Scope is defined as the lexical region of code over which an identifier is valid.
In JavaScript, every function-object has a hidden [[Environment]]
reference that is a reference to the lexical environment of the execution context (stack frame) within which it was created.
When you invoke a function, the hidden [[Call]]
method is called. This method creates a new execution context and establishes a link between the new execution context and the lexical environment of the function-object. It does this by copying the [[Environment]]
value on the function-object, into an outer reference field on the lexical environment of the new execution context.
Note that this link between the new execution context and the lexical environment of the function object is called a closure.
Thus, in JavaScript, scope is implemented via lexical environments linked together in a "chain" by outer references. This chain of lexical environments is called the scope chain, and identifier resolution occurs by searching up the chain for a matching identifier.
Find out more.
Best Solution
Frameworks like CodeIgniter let you pass the variables into the controller without disclosing the variable name -
would get processed as:
http://codeigniter.com/user_guide/general/controllers.html
I like this as it gives you control of how many parameters your controller will accept, and if it is important that certain variables are never used, you can do logic or redirect appropriately.