Maybe a bit of example code will help: Notice the difference in the call signatures of foo
, class_foo
and static_foo
:
class A(object):
def foo(self, x):
print(f"executing foo({self}, {x})")
@classmethod
def class_foo(cls, x):
print(f"executing class_foo({cls}, {x})")
@staticmethod
def static_foo(x):
print(f"executing static_foo({x})")
a = A()
Below is the usual way an object instance calls a method. The object instance, a
, is implicitly passed as the first argument.
a.foo(1)
# executing foo(<__main__.A object at 0xb7dbef0c>, 1)
With classmethods, the class of the object instance is implicitly passed as the first argument instead of self
.
a.class_foo(1)
# executing class_foo(<class '__main__.A'>, 1)
You can also call class_foo
using the class. In fact, if you define something to be
a classmethod, it is probably because you intend to call it from the class rather than from a class instance. A.foo(1)
would have raised a TypeError, but A.class_foo(1)
works just fine:
A.class_foo(1)
# executing class_foo(<class '__main__.A'>, 1)
One use people have found for class methods is to create inheritable alternative constructors.
With staticmethods, neither self
(the object instance) nor cls
(the class) is implicitly passed as the first argument. They behave like plain functions except that you can call them from an instance or the class:
a.static_foo(1)
# executing static_foo(1)
A.static_foo('hi')
# executing static_foo(hi)
Staticmethods are used to group functions which have some logical connection with a class to the class.
foo
is just a function, but when you call a.foo
you don't just get the function,
you get a "partially applied" version of the function with the object instance a
bound as the first argument to the function. foo
expects 2 arguments, while a.foo
only expects 1 argument.
a
is bound to foo
. That is what is meant by the term "bound" below:
print(a.foo)
# <bound method A.foo of <__main__.A object at 0xb7d52f0c>>
With a.class_foo
, a
is not bound to class_foo
, rather the class A
is bound to class_foo
.
print(a.class_foo)
# <bound method type.class_foo of <class '__main__.A'>>
Here, with a staticmethod, even though it is a method, a.static_foo
just returns
a good 'ole function with no arguments bound. static_foo
expects 1 argument, and
a.static_foo
expects 1 argument too.
print(a.static_foo)
# <function static_foo at 0xb7d479cc>
And of course the same thing happens when you call static_foo
with the class A
instead.
print(A.static_foo)
# <function static_foo at 0xb7d479cc>
URIs identify and URLs locate; however, locators are also identifiers, so every URL is also a URI, but there are URIs which are not URLs.
Examples
This is my name, which is an identifier.
It is like a URI, but cannot be a URL, as it tells you nothing about my location or how to contact me.
In this case it also happens to identify at least 5 other people in the USA alone.
- 4914 West Bay Street, Nassau, Bahamas
This is a locator, which is an identifier for that physical location.
It is like both a URL and URI (since all URLs are URIs), and also identifies me indirectly as "resident of..".
In this case it uniquely identifies me, but that would change if I get a roommate.
I say "like" because these examples do not follow the required syntax.
Popular confusion
From Wikipedia:
In computing, a Uniform Resource Locator (URL) is a subset of the Uniform Resource Identifier (URI) that specifies where an identified resource is available and the mechanism for retrieving it. In popular usage and in many technical documents and verbal discussions it is often incorrectly used as a synonym for URI, ... [emphasis mine]
Because of this common confusion, many products and documentation incorrectly use one term instead of the other, assign their own distinction, or use them synonymously.
URNs
My name, Roger Pate, could be like a URN (Uniform Resource Name), except those are much more regulated and intended to be unique across both space and time.
Because I currently share this name with other people, it's not globally unique and would not be appropriate as a URN. However, even if no other family used this name, I'm named after my paternal grandfather, so it still wouldn't be unique across time. And even if that wasn't the case, the possibility of naming my descendants after me make this unsuitable as a URN.
URNs are different from URLs in this rigid uniqueness constraint, even though they both share the syntax of URIs.
Best Solution