Maybe a bit of example code will help: Notice the difference in the call signatures of foo
, class_foo
and static_foo
:
class A(object):
def foo(self, x):
print(f"executing foo({self}, {x})")
@classmethod
def class_foo(cls, x):
print(f"executing class_foo({cls}, {x})")
@staticmethod
def static_foo(x):
print(f"executing static_foo({x})")
a = A()
Below is the usual way an object instance calls a method. The object instance, a
, is implicitly passed as the first argument.
a.foo(1)
# executing foo(<__main__.A object at 0xb7dbef0c>, 1)
With classmethods, the class of the object instance is implicitly passed as the first argument instead of self
.
a.class_foo(1)
# executing class_foo(<class '__main__.A'>, 1)
You can also call class_foo
using the class. In fact, if you define something to be
a classmethod, it is probably because you intend to call it from the class rather than from a class instance. A.foo(1)
would have raised a TypeError, but A.class_foo(1)
works just fine:
A.class_foo(1)
# executing class_foo(<class '__main__.A'>, 1)
One use people have found for class methods is to create inheritable alternative constructors.
With staticmethods, neither self
(the object instance) nor cls
(the class) is implicitly passed as the first argument. They behave like plain functions except that you can call them from an instance or the class:
a.static_foo(1)
# executing static_foo(1)
A.static_foo('hi')
# executing static_foo(hi)
Staticmethods are used to group functions which have some logical connection with a class to the class.
foo
is just a function, but when you call a.foo
you don't just get the function,
you get a "partially applied" version of the function with the object instance a
bound as the first argument to the function. foo
expects 2 arguments, while a.foo
only expects 1 argument.
a
is bound to foo
. That is what is meant by the term "bound" below:
print(a.foo)
# <bound method A.foo of <__main__.A object at 0xb7d52f0c>>
With a.class_foo
, a
is not bound to class_foo
, rather the class A
is bound to class_foo
.
print(a.class_foo)
# <bound method type.class_foo of <class '__main__.A'>>
Here, with a staticmethod, even though it is a method, a.static_foo
just returns
a good 'ole function with no arguments bound. static_foo
expects 1 argument, and
a.static_foo
expects 1 argument too.
print(a.static_foo)
# <function static_foo at 0xb7d479cc>
And of course the same thing happens when you call static_foo
with the class A
instead.
print(A.static_foo)
# <function static_foo at 0xb7d479cc>
On Python ≥ 3.5, use pathlib.Path.mkdir
:
from pathlib import Path
Path("/my/directory").mkdir(parents=True, exist_ok=True)
For older versions of Python, I see two answers with good qualities, each with a small flaw, so I will give my take on it:
Try os.path.exists
, and consider os.makedirs
for the creation.
import os
if not os.path.exists(directory):
os.makedirs(directory)
As noted in comments and elsewhere, there's a race condition – if the directory is created between the os.path.exists
and the os.makedirs
calls, the os.makedirs
will fail with an OSError
. Unfortunately, blanket-catching OSError
and continuing is not foolproof, as it will ignore a failure to create the directory due to other factors, such as insufficient permissions, full disk, etc.
One option would be to trap the OSError
and examine the embedded error code (see Is there a cross-platform way of getting information from Python’s OSError):
import os, errno
try:
os.makedirs(directory)
except OSError as e:
if e.errno != errno.EEXIST:
raise
Alternatively, there could be a second os.path.exists
, but suppose another created the directory after the first check, then removed it before the second one – we could still be fooled.
Depending on the application, the danger of concurrent operations may be more or less than the danger posed by other factors such as file permissions. The developer would have to know more about the particular application being developed and its expected environment before choosing an implementation.
Modern versions of Python improve this code quite a bit, both by exposing FileExistsError
(in 3.3+)...
try:
os.makedirs("path/to/directory")
except FileExistsError:
# directory already exists
pass
...and by allowing a keyword argument to os.makedirs
called exist_ok
(in 3.2+).
os.makedirs("path/to/directory", exist_ok=True) # succeeds even if directory exists.
Best Solution
There isn't a way to do so. You can extract certain parts of code, but you cannot have pycharm generate getters and setters for you. There is no need either, since all variables are public, and the
_var
values, even though are treated as private variables can be altered as well.EDIT (Change in question):
If you want to write less code when making getters and setters, then just use the
props
or thepropsd
snippet in PyCharm.