How do Trigonometric functions work?


So in high school math, and probably college, we are taught how to use trig functions, what they do, and what kinds of problems they solve. But they have always been presented to me as a black box. If you need the Sine or Cosine of something, you hit the sin or cos button on your calculator and you're set. Which is fine.

What I'm wondering is how trigonometric functions are typically implemented.

Best Solution

First, you have to do some sort of range reduction. Trig functions are periodic, so you need to reduce arguments down to a standard interval. For starters, you could reduce angles to be between 0 and 360 degrees. But by using a few identities, you realize you could get by with less. If you calculate sines and cosines for angles between 0 and 45 degrees, you can bootstrap your way to calculating all trig functions for all angles.

Once you've reduced your argument, most chips use a CORDIC algorithm to compute the sines and cosines. You may hear people say that computers use Taylor series. That sounds reasonable, but it's not true. The CORDIC algorithms are much better suited to efficient hardware implementation. (Software libraries may use Taylor series, say on hardware that doesn't support trig functions.) There may be some additional processing, using the CORDIC algorithm to get fairly good answers but then doing something else to improve accuracy.

There are some refinements to the above. For example, for very small angles theta (in radians), sin(theta) = theta to all the precision you have, so it's more efficient to simply return theta than to use some other algorithm. So in practice there is a lot of special case logic to squeeze out all the performance and accuracy possible. Chips with smaller markets may not go to as much optimization effort.

Related Question