R – How to best simulate an arbitrary univariate random variate using its probability function

rrandom

In R, what's the best way to simulate an arbitrary univariate random variate if only its probability density function is available?

Best Solution

Here is a (slow) implementation of the inverse cdf method when you are only given a density.

den<-dnorm #replace with your own density

#calculates the cdf by numerical integration
cdf<-function(x) integrate(den,-Inf,x)[[1]]

#inverts the cdf
inverse.cdf<-function(x,cdf,starting.value=0){
 lower.found<-FALSE
 lower<-starting.value
 while(!lower.found){
  if(cdf(lower)>=(x-.000001))
   lower<-lower-(lower-starting.value)^2-1
  else
   lower.found<-TRUE
 }
 upper.found<-FALSE
 upper<-starting.value
 while(!upper.found){
  if(cdf(upper)<=(x+.000001))
   upper<-upper+(upper-starting.value)^2+1
  else
   upper.found<-TRUE
 }
 uniroot(function(y) cdf(y)-x,c(lower,upper))$root
}

#generates 1000 random variables of distribution 'den'
vars<-apply(matrix(runif(1000)),1,function(x) inverse.cdf(x,cdf))
hist(vars)
Related Question