With ps
or similar tools you will only get the amount of memory pages allocated by that process. This number is correct, but:
does not reflect the actual amount of memory used by the application, only the amount of memory reserved for it
can be misleading if pages are shared, for example by several threads or by using dynamically linked libraries
If you really want to know what amount of memory your application actually uses, you need to run it within a profiler. For example, Valgrind can give you insights about the amount of memory used, and, more importantly, about possible memory leaks in your program. The heap profiler tool of Valgrind is called 'massif':
Massif is a heap profiler. It performs detailed heap profiling by taking regular snapshots of a program's heap. It produces a graph showing heap usage over time, including information about which parts of the program are responsible for the most memory allocations. The graph is supplemented by a text or HTML file that includes more information for determining where the most memory is being allocated. Massif runs programs about 20x slower than normal.
As explained in the Valgrind documentation, you need to run the program through Valgrind:
valgrind --tool=massif <executable> <arguments>
Massif writes a dump of memory usage snapshots (e.g. massif.out.12345
). These provide, (1) a timeline of memory usage, (2) for each snapshot, a record of where in your program memory was allocated. A great graphical tool for analyzing these files is massif-visualizer. But I found ms_print
, a simple text-based tool shipped with Valgrind, to be of great help already.
To find memory leaks, use the (default) memcheck
tool of valgrind.
The simplest and most widely available method to get user input at a shell prompt is the read
command. The best way to illustrate its use is a simple demonstration:
while true; do
read -p "Do you wish to install this program?" yn
case $yn in
[Yy]* ) make install; break;;
[Nn]* ) exit;;
* ) echo "Please answer yes or no.";;
esac
done
Another method, pointed out by Steven Huwig, is Bash's select
command. Here is the same example using select
:
echo "Do you wish to install this program?"
select yn in "Yes" "No"; do
case $yn in
Yes ) make install; break;;
No ) exit;;
esac
done
With select
you don't need to sanitize the input – it displays the available choices, and you type a number corresponding to your choice. It also loops automatically, so there's no need for a while true
loop to retry if they give invalid input.
Also, Léa Gris demonstrated a way to make the request language agnostic in her answer. Adapting my first example to better serve multiple languages might look like this:
set -- $(locale LC_MESSAGES)
yesptrn="$1"; noptrn="$2"; yesword="$3"; noword="$4"
while true; do
read -p "Install (${yesword} / ${noword})? " yn
if [[ "$yn" =~ $yesexpr ]]; then make install; exit; fi
if [[ "$yn" =~ $noexpr ]]; then exit; fi
echo "Answer ${yesword} / ${noword}."
done
Obviously other communication strings remain untranslated here (Install, Answer) which would need to be addressed in a more fully completed translation, but even a partial translation would be helpful in many cases.
Finally, please check out the excellent answer by F. Hauri.
Best Solution
There is just one common kernel memory. In it each process has it's own task_struct + kernel stack (by default 8K).
In a context switch the old stack pointer is saved somewhere and the actual stack pointer is made to point to the top of the stack (or bottom depending on the hardware architecture) of the new process which is going to run.