Multicore + Hyperthreading – how are threads distributed

hyperthreadingmulticoremultithreadingoperating-system

I was reading a review of the new Intel Atom 330, where they noted that Task Manager shows 4 cores – two physical cores, plus two more simulated by Hyperthreading.

Suppose you have a program with two threads. Suppose also that these are the only threads doing any work on the PC, everything else is idle. What is the probability that the OS will put both threads on the same core? This has huge implications for program throughput.

If the answer is anything other than 0%, are there any mitigation strategies other than creating more threads?

I expect there will be different answers for Windows, Linux, and Mac OS X.


Using sk's answer as Google fodder, then following the links, I found the GetLogicalProcessorInformation function in Windows. It speaks of "logical processors that share resources. An example of this type of resource sharing would be hyperthreading scenarios." This implies that jalf is correct, but it's not quite a definitive answer.

Best Solution

Linux has quite a sophisticated thread scheduler which is HT aware. Some of its strategies include:

Passive Loadbalancing: If a physical CPU is running more than one task the scheduler will attempt to run any new tasks on a second physical processor.

Active Loadbalancing: If there are 3 tasks, 2 on one physical cpu and 1 on the other when the second physical processor goes idle the scheduler will attempt to migrate one of the tasks to it.

It does this while attempting to keep thread affinity because when a thread migrates to another physical processor it will have to refill all levels of cache from main memory causing a stall in the task.

So to answer your question (on Linux at least); given 2 threads on a dual core hyperthreaded machine, each thread will run on its own physical core.