I have a web application, that will log some information to a file. I am looking for a simple thread-safe non-blocking file logger class in c#. I have little experience with threading. I known there are great logging components out there like log4Net, Enterprise Library Logging Block, ELMAH, but I do not want an external dependence for my application. I was thinking about using this queue implementation http://www.codeproject.com/KB/cpp/lockfreeq.aspx
.net – Simple thread-safe non-blocking file logger class in c#
.netloggingnonblockingthread-safety
Related Solutions
fcntl
, select
, asyncproc
won't help in this case.
A reliable way to read a stream without blocking regardless of operating system is to use Queue.get_nowait()
:
import sys
from subprocess import PIPE, Popen
from threading import Thread
try:
from queue import Queue, Empty
except ImportError:
from Queue import Queue, Empty # python 2.x
ON_POSIX = 'posix' in sys.builtin_module_names
def enqueue_output(out, queue):
for line in iter(out.readline, b''):
queue.put(line)
out.close()
p = Popen(['myprogram.exe'], stdout=PIPE, bufsize=1, close_fds=ON_POSIX)
q = Queue()
t = Thread(target=enqueue_output, args=(p.stdout, q))
t.daemon = True # thread dies with the program
t.start()
# ... do other things here
# read line without blocking
try: line = q.get_nowait() # or q.get(timeout=.1)
except Empty:
print('no output yet')
else: # got line
# ... do something with line
I wrote this code a while back, feel free to use it.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
namespace MediaBrowser.Library.Logging {
public abstract class ThreadedLogger : LoggerBase {
Queue<Action> queue = new Queue<Action>();
AutoResetEvent hasNewItems = new AutoResetEvent(false);
volatile bool waiting = false;
public ThreadedLogger() : base() {
Thread loggingThread = new Thread(new ThreadStart(ProcessQueue));
loggingThread.IsBackground = true;
loggingThread.Start();
}
void ProcessQueue() {
while (true) {
waiting = true;
hasNewItems.WaitOne(10000,true);
waiting = false;
Queue<Action> queueCopy;
lock (queue) {
queueCopy = new Queue<Action>(queue);
queue.Clear();
}
foreach (var log in queueCopy) {
log();
}
}
}
public override void LogMessage(LogRow row) {
lock (queue) {
queue.Enqueue(() => AsyncLogMessage(row));
}
hasNewItems.Set();
}
protected abstract void AsyncLogMessage(LogRow row);
public override void Flush() {
while (!waiting) {
Thread.Sleep(1);
}
}
}
}
Some advantages:
- It keeps the background logger alive, so it does not need to spin up and spin down threads.
- It uses a single thread to service the queue, which means there will never be a situation where 100 threads are servicing the queue.
- It copies the queues to ensure the queue is not blocked while the log operation is performed
- It uses an AutoResetEvent to ensure the bg thread is in a wait state
- It is, IMHO, very easy to follow
Here is a slightly improved version, keep in mind I performed very little testing on it, but it does address a few minor issues.
public abstract class ThreadedLogger : IDisposable {
Queue<Action> queue = new Queue<Action>();
ManualResetEvent hasNewItems = new ManualResetEvent(false);
ManualResetEvent terminate = new ManualResetEvent(false);
ManualResetEvent waiting = new ManualResetEvent(false);
Thread loggingThread;
public ThreadedLogger() {
loggingThread = new Thread(new ThreadStart(ProcessQueue));
loggingThread.IsBackground = true;
// this is performed from a bg thread, to ensure the queue is serviced from a single thread
loggingThread.Start();
}
void ProcessQueue() {
while (true) {
waiting.Set();
int i = ManualResetEvent.WaitAny(new WaitHandle[] { hasNewItems, terminate });
// terminate was signaled
if (i == 1) return;
hasNewItems.Reset();
waiting.Reset();
Queue<Action> queueCopy;
lock (queue) {
queueCopy = new Queue<Action>(queue);
queue.Clear();
}
foreach (var log in queueCopy) {
log();
}
}
}
public void LogMessage(LogRow row) {
lock (queue) {
queue.Enqueue(() => AsyncLogMessage(row));
}
hasNewItems.Set();
}
protected abstract void AsyncLogMessage(LogRow row);
public void Flush() {
waiting.WaitOne();
}
public void Dispose() {
terminate.Set();
loggingThread.Join();
}
}
Advantages over the original:
- It's disposable, so you can get rid of the async logger
- The flush semantics are improved
- It will respond slightly better to a burst followed by silence
Best Solution
if you do not want to use external library, you can use Trace class