In .NET, there are two categories of types, reference types and value types.
Structs are value types and classes are reference types.
The general difference is that a reference type lives on the heap, and a value type lives inline, that is, wherever it is your variable or field is defined.
A variable containing a value type contains the entire value type value. For a struct, that means that the variable contains the entire struct, with all its fields.
A variable containing a reference type contains a pointer, or a reference to somewhere else in memory where the actual value resides.
This has one benefit, to begin with:
- value types always contains a value
- reference types can contain a null-reference, meaning that they don't refer to anything at all at the moment
Internally, reference types are implemented as pointers, and knowing that, and knowing how variable assignment works, there are other behavioral patterns:
- copying the contents of a value type variable into another variable, copies the entire contents into the new variable, making the two distinct. In other words, after the copy, changes to one won't affect the other
- copying the contents of a reference type variable into another variable, copies the reference, which means you now have two references to the same somewhere else storage of the actual data. In other words, after the copy, changing the data in one reference will appear to affect the other as well, but only because you're really just looking at the same data both places
When you declare variables or fields, here's how the two types differ:
- variable: value type lives on the stack, reference type lives on the stack as a pointer to somewhere in heap memory where the actual memory lives (though note Eric Lipperts article series: The Stack Is An Implementation Detail.)
- class/struct-field: value type lives completely inside the type, reference type lives inside the type as a pointer to somewhere in heap memory where the actual memory lives.
There is actually a (subtle) difference between the two. Imagine you have the following code in File1.cs:
// File1.cs
using System;
namespace Outer.Inner
{
class Foo
{
static void Bar()
{
double d = Math.PI;
}
}
}
Now imagine that someone adds another file (File2.cs) to the project that looks like this:
// File2.cs
namespace Outer
{
class Math
{
}
}
The compiler searches Outer
before looking at those using
directives outside the namespace, so it finds Outer.Math
instead of System.Math
. Unfortunately (or perhaps fortunately?), Outer.Math
has no PI
member, so File1 is now broken.
This changes if you put the using
inside your namespace declaration, as follows:
// File1b.cs
namespace Outer.Inner
{
using System;
class Foo
{
static void Bar()
{
double d = Math.PI;
}
}
}
Now the compiler searches System
before searching Outer
, finds System.Math
, and all is well.
Some would argue that Math
might be a bad name for a user-defined class, since there's already one in System
; the point here is just that there is a difference, and it affects the maintainability of your code.
It's also interesting to note what happens if Foo
is in namespace Outer
, rather than Outer.Inner
. In that case, adding Outer.Math
in File2 breaks File1 regardless of where the using
goes. This implies that the compiler searches the innermost enclosing namespace before it looks at any using
directive.
Best Solution
At a PPOE, at least a hundred thousand dollars was spent on this question. The main sticking points:
A lot of the time, an HTTP connection will go out, and come back with a "200 OK" message. Only it's not your site; it the hotel/cafe/whatever router offering to connect you.
The APIs will lie in interesting and creative ways. For example, some of the Windows network APIs return bad connection data if you used to have a modem, but then upgraded to DSL, but didn't run the wizard.
In some (very important) places, trying to connect will start a connection -- on dialup -- with a per-minute charge. Again, at the PPOE they shipped a reasonably popular bit of software that did this at 3:00 AM. Made for some seriously grumpy customers.
Some major ISPs have "unique" software when run on broadband where they weren't clever enough to just use the nice Ethernet and TCP/IP they are given. Instead they use the Ethernet to emulate a modem (which in turn is set up to emulate an Ethernet +tcp/ip setup). It's called PPPOE and it makes it hard to tell what adapter you are trying to use
More and more homes are using DSL and Cabel modems where the computer is "connected", but only to the local box; the local box may have lost connectivity and you won't ever know.
THE ONLY SOLUTION is to try a connection AND validate the return.