Consider a simple function that adds the first N natural numbers. (e.g. sum(5) = 0 + 1 + 2 + 3 + 4 + 5 = 15
).
Here is a simple JavaScript implementation that uses recursion:
function recsum(x) {
if (x === 0) {
return 0;
} else {
return x + recsum(x - 1);
}
}
If you called recsum(5)
, this is what the JavaScript interpreter would evaluate:
recsum(5)
5 + recsum(4)
5 + (4 + recsum(3))
5 + (4 + (3 + recsum(2)))
5 + (4 + (3 + (2 + recsum(1))))
5 + (4 + (3 + (2 + (1 + recsum(0)))))
5 + (4 + (3 + (2 + (1 + 0))))
5 + (4 + (3 + (2 + 1)))
5 + (4 + (3 + 3))
5 + (4 + 6)
5 + 10
15
Note how every recursive call has to complete before the JavaScript interpreter begins to actually do the work of calculating the sum.
Here's a tail-recursive version of the same function:
function tailrecsum(x, running_total = 0) {
if (x === 0) {
return running_total;
} else {
return tailrecsum(x - 1, running_total + x);
}
}
Here's the sequence of events that would occur if you called tailrecsum(5)
, (which would effectively be tailrecsum(5, 0)
, because of the default second argument).
tailrecsum(5, 0)
tailrecsum(4, 5)
tailrecsum(3, 9)
tailrecsum(2, 12)
tailrecsum(1, 14)
tailrecsum(0, 15)
15
In the tail-recursive case, with each evaluation of the recursive call, the running_total
is updated.
Note: The original answer used examples from Python. These have been changed to JavaScript, since Python interpreters don't support tail call optimization. However, while tail call optimization is part of the ECMAScript 2015 spec, most JavaScript interpreters don't support it.
All current mainstream compilers perform tail call optimisation fairly well (and have done for more than a decade), even for mutually recursive calls such as:
int bar(int, int);
int foo(int n, int acc) {
return (n == 0) ? acc : bar(n - 1, acc + 2);
}
int bar(int n, int acc) {
return (n == 0) ? acc : foo(n - 1, acc + 1);
}
Letting the compiler do the optimisation is straightforward: Just switch on optimisation for speed:
- For MSVC, use
/O2
or /Ox
.
- For GCC, Clang and ICC, use
-O3
An easy way to check if the compiler did the optimisation is to perform a call that would otherwise result in a stack overflow — or looking at the assembly output.
As an interesting historical note, tail call optimisation for C was added to the GCC in the course of a diploma thesis by Mark Probst. The thesis describes some interesting caveats in the implementation. It's worth reading.
Best Solution
Methods that can be overridden can NOT be tail recursive. Try this: