tl;dr
class C
defines a class, just as in Java or C++.
object O
creates a singleton object O
as instance of some anonymous class; it can be used to hold static members that are not associated with instances of some class.
object O extends T
makes the object O
an instance of trait T
; you can then pass O
anywhere, a T
is expected.
- if there is a
class C
, then object C
is the companion object of class C
; note that the companion object is not automatically an instance of C
.
Also see Scala documentation for object and class.
object
as host of static members
Most often, you need an object
to hold methods and values/variables that shall be available without having to first instantiate an instance of some class.
This use is closely related to static
members in Java.
object A {
def twice(i: Int): Int = 2*i
}
You can then call above method using A.twice(2)
.
If twice
were a member of some class A
, then you would need to make an instance first:
class A() {
def twice(i: Int): Int = 2 * i
}
val a = new A()
a.twice(2)
You can see how redundant this is, as twice
does not require any instance-specific data.
object
as a special named instance
You can also use the object
itself as some special instance of a class or trait.
When you do this, your object needs to extend some trait
in order to become an instance of a subclass of it.
Consider the following code:
object A extends B with C {
...
}
This declaration first declares an anonymous (inaccessible) class that extends both B
and C
, and instantiates a single instance of this class named A
.
This means A
can be passed to functions expecting objects of type B
or C
, or B with C
.
Additional Features of object
There also exist some special features of objects in Scala.
I recommend to read the official documentation.
def apply(...)
enables the usual method name-less syntax of A(...)
def unapply(...)
allows to create custom pattern matching extractors
- if accompanying a class of the same name, the object assumes a special role when resolving implicit parameters
The ones I can think of are
Existential types
def foo(l: List[Option[_]]) = ...
Higher kinded type parameters
case class A[K[_],T](a: K[T])
Ignored variables
val _ = 5
Ignored parameters
List(1, 2, 3) foreach { _ => println("Hi") }
Ignored names of self types
trait MySeq { _: Seq[_] => }
Wildcard patterns
Some(5) match { case Some(_) => println("Yes") }
Wildcard patterns in interpolations
"abc" match { case s"a$_c" => }
Sequence wildcard in patterns
C(1, 2, 3) match { case C(vs @ _*) => vs.foreach(f(_)) }
Wildcard imports
import java.util._
Hiding imports
import java.util.{ArrayList => _, _}
Joining letters to operators
def bang_!(x: Int) = 5
Assignment operators
def foo_=(x: Int) { ... }
Placeholder syntax
List(1, 2, 3) map (_ + 2)
Method values
List(1, 2, 3) foreach println _
Converting call-by-name parameters to functions
def toFunction(callByName: => Int): () => Int = callByName _
Default initializer
var x: String = _ // unloved syntax may be eliminated
There may be others I have forgotten!
Example showing why foo(_)
and foo _
are different:
This example comes from 0__:
trait PlaceholderExample {
def process[A](f: A => Unit)
val set: Set[_ => Unit]
set.foreach(process _) // Error
set.foreach(process(_)) // No Error
}
In the first case, process _
represents a method; Scala takes the polymorphic method and attempts to make it monomorphic by filling in the type parameter, but realizes that there is no type that can be filled in for A
that will give the type (_ => Unit) => ?
(Existential _
is not a type).
In the second case, process(_)
is a lambda; when writing a lambda with no explicit argument type, Scala infers the type from the argument that foreach
expects, and _ => Unit
is a type (whereas just plain _
isn't), so it can be substituted and inferred.
This may well be the trickiest gotcha in Scala I have ever encountered.
Note that this example compiles in 2.13. Ignore it like it was assigned to underscore.
Best Solution
Note type "() => Any" is not the same as by-name parameter "=> Any". Type "() => Any" is a function that takes no parameter and returns Any, whereas by-name parameter "=> Any" delays execution of the parameter until it's used and returns Any.
So what you need to do here is the following: