The correct way to avoid SQL injection attacks, no matter which database you use, is to separate the data from SQL, so that data stays data and will never be interpreted as commands by the SQL parser. It is possible to create SQL statement with correctly formatted data parts, but if you don't fully understand the details, you should always use prepared statements and parameterized queries. These are SQL statements that are sent to and parsed by the database server separately from any parameters. This way it is impossible for an attacker to inject malicious SQL.
You basically have two options to achieve this:
Using PDO (for any supported database driver):
$stmt = $pdo->prepare('SELECT * FROM employees WHERE name = :name');
$stmt->execute([ 'name' => $name ]);
foreach ($stmt as $row) {
// Do something with $row
}
Using MySQLi (for MySQL):
$stmt = $dbConnection->prepare('SELECT * FROM employees WHERE name = ?');
$stmt->bind_param('s', $name); // 's' specifies the variable type => 'string'
$stmt->execute();
$result = $stmt->get_result();
while ($row = $result->fetch_assoc()) {
// Do something with $row
}
If you're connecting to a database other than MySQL, there is a driver-specific second option that you can refer to (for example, pg_prepare()
and pg_execute()
for PostgreSQL). PDO is the universal option.
Correctly setting up the connection
Note that when using PDO to access a MySQL database real prepared statements are not used by default. To fix this you have to disable the emulation of prepared statements. An example of creating a connection using PDO is:
$dbConnection = new PDO('mysql:dbname=dbtest;host=127.0.0.1;charset=utf8', 'user', 'password');
$dbConnection->setAttribute(PDO::ATTR_EMULATE_PREPARES, false);
$dbConnection->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
In the above example the error mode isn't strictly necessary, but it is advised to add it. This way the script will not stop with a Fatal Error
when something goes wrong. And it gives the developer the chance to catch
any error(s) which are throw
n as PDOException
s.
What is mandatory, however, is the first setAttribute()
line, which tells PDO to disable emulated prepared statements and use real prepared statements. This makes sure the statement and the values aren't parsed by PHP before sending it to the MySQL server (giving a possible attacker no chance to inject malicious SQL).
Although you can set the charset
in the options of the constructor, it's important to note that 'older' versions of PHP (before 5.3.6) silently ignored the charset parameter in the DSN.
Explanation
The SQL statement you pass to prepare
is parsed and compiled by the database server. By specifying parameters (either a ?
or a named parameter like :name
in the example above) you tell the database engine where you want to filter on. Then when you call execute
, the prepared statement is combined with the parameter values you specify.
The important thing here is that the parameter values are combined with the compiled statement, not an SQL string. SQL injection works by tricking the script into including malicious strings when it creates SQL to send to the database. So by sending the actual SQL separately from the parameters, you limit the risk of ending up with something you didn't intend.
Any parameters you send when using a prepared statement will just be treated as strings (although the database engine may do some optimization so parameters may end up as numbers too, of course). In the example above, if the $name
variable contains 'Sarah'; DELETE FROM employees
the result would simply be a search for the string "'Sarah'; DELETE FROM employees"
, and you will not end up with an empty table.
Another benefit of using prepared statements is that if you execute the same statement many times in the same session it will only be parsed and compiled once, giving you some speed gains.
Oh, and since you asked about how to do it for an insert, here's an example (using PDO):
$preparedStatement = $db->prepare('INSERT INTO table (column) VALUES (:column)');
$preparedStatement->execute([ 'column' => $unsafeValue ]);
Can prepared statements be used for dynamic queries?
While you can still use prepared statements for the query parameters, the structure of the dynamic query itself cannot be parametrized and certain query features cannot be parametrized.
For these specific scenarios, the best thing to do is use a whitelist filter that restricts the possible values.
// Value whitelist
// $dir can only be 'DESC', otherwise it will be 'ASC'
if (empty($dir) || $dir !== 'DESC') {
$dir = 'ASC';
}
You can parameterize each value, so something like:
string[] tags = new string[] { "ruby", "rails", "scruffy", "rubyonrails" };
string cmdText = "SELECT * FROM Tags WHERE Name IN ({0})";
string[] paramNames = tags.Select(
(s, i) => "@tag" + i.ToString()
).ToArray();
string inClause = string.Join(", ", paramNames);
using (SqlCommand cmd = new SqlCommand(string.Format(cmdText, inClause))) {
for(int i = 0; i < paramNames.Length; i++) {
cmd.Parameters.AddWithValue(paramNames[i], tags[i]);
}
}
Which will give you:
cmd.CommandText = "SELECT * FROM Tags WHERE Name IN (@tag0, @tag1, @tag2, @tag3)"
cmd.Parameters["@tag0"] = "ruby"
cmd.Parameters["@tag1"] = "rails"
cmd.Parameters["@tag2"] = "scruffy"
cmd.Parameters["@tag3"] = "rubyonrails"
No, this is not open to SQL injection. The only injected text into CommandText is not based on user input. It's solely based on the hardcoded "@tag" prefix, and the index of an array. The index will always be an integer, is not user generated, and is safe.
The user inputted values are still stuffed into parameters, so there is no vulnerability there.
Edit:
Injection concerns aside, take care to note that constructing the command text to accomodate a variable number of parameters (as above) impede's SQL server's ability to take advantage of cached queries. The net result is that you almost certainly lose the value of using parameters in the first place (as opposed to merely inserting the predicate strings into the SQL itself).
Not that cached query plans aren't valuable, but IMO this query isn't nearly complicated enough to see much benefit from it. While the compilation costs may approach (or even exceed) the execution costs, you're still talking milliseconds.
If you have enough RAM, I'd expect SQL Server would probably cache a plan for the common counts of parameters as well. I suppose you could always add five parameters, and let the unspecified tags be NULL - the query plan should be the same, but it seems pretty ugly to me and I'm not sure that it'd worth the micro-optimization (although, on Stack Overflow - it may very well be worth it).
Also, SQL Server 7 and later will auto-parameterize queries, so using parameters isn't really necessary from a performance standpoint - it is, however, critical from a security standpoint - especially with user inputted data like this.
Best Solution
In TSQL, you can specify two different sizes for float, 24 or 53. This will set the precision to 7 or 15 digits respectively.
If all you want to do is truncate to a set number of decimal places, you can use ROUND, ie: