In practice, the difference is in the location where the preprocessor searches for the included file.
For #include <filename>
the preprocessor searches in an implementation dependent manner, normally in search directories pre-designated by the compiler/IDE. This method is normally used to include standard library header files.
For #include "filename"
the preprocessor searches first in the same directory as the file containing the directive, and then follows the search path used for the #include <filename>
form. This method is normally used to include programmer-defined header files.
A more complete description is available in the GCC documentation on search paths.
The strict equality operator (===
) behaves identically to the abstract equality operator (==
) except no type conversion is done, and the types must be the same to be considered equal.
Reference: Javascript Tutorial: Comparison Operators
The ==
operator will compare for equality after doing any necessary type conversions. The ===
operator will not do the conversion, so if two values are not the same type ===
will simply return false
. Both are equally quick.
To quote Douglas Crockford's excellent JavaScript: The Good Parts,
JavaScript has two sets of equality operators: ===
and !==
, and their evil twins ==
and !=
. The good ones work the way you would expect. If the two operands are of the same type and have the same value, then ===
produces true
and !==
produces false
. The evil twins do the right thing when the operands are of the same type, but if they are of different types, they attempt to coerce the values. the rules by which they do that are complicated and unmemorable. These are some of the interesting cases:
'' == '0' // false
0 == '' // true
0 == '0' // true
false == 'false' // false
false == '0' // true
false == undefined // false
false == null // false
null == undefined // true
' \t\r\n ' == 0 // true

The lack of transitivity is alarming. My advice is to never use the evil twins. Instead, always use ===
and !==
. All of the comparisons just shown produce false
with the ===
operator.
Update:
A good point was brought up by @Casebash in the comments and in @Phillipe Laybaert's answer concerning objects. For objects, ==
and ===
act consistently with one another (except in a special case).
var a = [1,2,3];
var b = [1,2,3];
var c = { x: 1, y: 2 };
var d = { x: 1, y: 2 };
var e = "text";
var f = "te" + "xt";
a == b // false
a === b // false
c == d // false
c === d // false
e == f // true
e === f // true
The special case is when you compare a primitive with an object that evaluates to the same primitive, due to its toString
or valueOf
method. For example, consider the comparison of a string primitive with a string object created using the String
constructor.
"abc" == new String("abc") // true
"abc" === new String("abc") // false
Here the ==
operator is checking the values of the two objects and returning true
, but the ===
is seeing that they're not the same type and returning false
. Which one is correct? That really depends on what you're trying to compare. My advice is to bypass the question entirely and just don't use the String
constructor to create string objects from string literals.
Reference
http://www.ecma-international.org/ecma-262/5.1/#sec-11.9.3
Best Solution
??!
is a trigraph that translates to|
. So it says:which, due to short circuiting, is equivalent to:
Guru of the Week (deals with C++ but relevant here), where I picked this up.
Possible origin of trigraphs or as @DwB points out in the comments it's more likely due to EBCDIC being difficult (again). This discussion on the IBM developerworks board seems to support that theory.
From ISO/IEC 9899:1999 §5.2.1.1, footnote 12 (h/t @Random832):